Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69248
Campo DC Valoridioma
dc.contributor.authorCampos-Delgado, Daniel U.en_US
dc.contributor.authorGutierrez-Navarro, Omaren_US
dc.contributor.authorRico-Jimenez, Jose J.en_US
dc.contributor.authorDuran-Sierra, Elvisen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorOrtega Sarmiento, Samuelen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.authorJo, Javier A.en_US
dc.date.accessioned2020-01-23T09:23:42Z-
dc.date.available2020-01-23T09:23:42Z-
dc.date.issued2019en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10553/69248-
dc.description.abstractIn some applications of biomedical imaging, a linear mixture model can represent the constitutive elements (end-members) and their contributions (abundances) per pixel of the image. In this work, the extended blind end-member and abundance extraction (EBEAE) methodology is mathematically formulated to address the blind linear unmixing (BLU) problem subject to positivity constraints in optical measurements. The EBEAE algorithm is based on a constrained quadratic optimization and an alternated least-squares strategy to jointly estimate end-members and their abundances. In our proposal, a local approach is used to estimate the abundances of each end-member by maximizing their entropy, and a global technique is adopted to iteratively identify the end-members by reducing the similarity among them. All the cost functions are normalized, and four initialization approaches are suggested for the end-members matrix. Synthetic datasets are used first for the EBEAE validation at different noise types and levels, and its performance is compared to state-of-the-art algorithms in BLU. In a second stage, three experimental biomedical imaging applications are addressed with EBEAE: M-FLIM for chemometric analysis in oral cavity samples, OCT for macrophages identification in post-mortem artery samples, and hyper-spectral images for in-vivo brain tissue classification and tumor identification. In our evaluations, EBEAE was able to provide a quantitative analysis of the samples with none or minimal a priori information.en_US
dc.languageengen_US
dc.relationIdentificación Hiperespectral de Tumores Cerebrales (Ithaca)en_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access [ISSN 2169-3536], v. 7, p. 178539 - 178552en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherBlind linear unmixingen_US
dc.subject.otherConstrained optimizationen_US
dc.subject.otherFluorescence lifetime imaging microscopyen_US
dc.subject.otherHyperspectral imagingen_US
dc.subject.otherOptical coherence tomographyen_US
dc.titleExtended Blind End-Member and Abundance Extraction for Biomedical Imaging Applicationsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2019.2958985
dc.identifier.scopus85077221616
dc.identifier.isi000509483800094
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid57207809029
dc.contributor.authorscopusid13604892600
dc.contributor.authorscopusid55675508600
dc.contributor.authorscopusid57204668879
dc.contributor.authorscopusid56405568500
dc.contributor.authorscopusid57213070492
dc.contributor.authorscopusid56006321500
dc.contributor.authorscopusid7102413227
dc.description.lastpage178552-
dc.description.firstpage178539-
dc.relation.volume7-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid319674
dc.contributor.daisngid34862129
dc.contributor.daisngid31868083
dc.contributor.daisngid34875625
dc.contributor.daisngid34770098
dc.contributor.daisngid31939674
dc.contributor.daisngid506422
dc.contributor.daisngid369864
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Campos-Delgado, DU
dc.contributor.wosstandardWOS:Gutierrez-Navarro, O
dc.contributor.wosstandardWOS:Rico-Jimenez, JJ
dc.contributor.wosstandardWOS:Duran-Sierra, E
dc.contributor.wosstandardWOS:Fabelo, H
dc.contributor.wosstandardWOS:Ortega, S
dc.contributor.wosstandardWOS:Callico, G
dc.contributor.wosstandardWOS:Jo, JA
dc.date.coverdate2019
dc.identifier.ulpgces
dc.description.sjr0,775
dc.description.jcr3,745
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
Colección:Artículos
miniatura
pdf
Adobe PDF (19,67 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.