Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/63426
Título: Most relevant spectral bands identification for brain cancer detection using hyperspectral imaging
Autores/as: Martínez Vega, Beatriz 
León Martín, Sonia Raquel 
Fabelo Gómez, Himar Antonio 
Ortega, Samuel 
Piñeiro, Juan F.
Zbigniew Szolna,Adam 
Hernandez, Maria
Espino, Carlos
O’shanahan, Aruma J.
Carrera, David
Bisshopp Alfonso, Sara 
Sosa Pérez, Coralia De Las Nieve 
Marquez, Mariano
Camacho, Rafael 
de la Luz Plaza, Maria
Morera, Jesus
Marrero Callicó, Gustavo Iván 
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Brain cancer
Hyperspectral imaging
Intraoperative imaging
Feature selection
Image-guided surgery, et al.
Fecha de publicación: 2019
Proyectos: Identificación Hiperespectral de Tumores Cerebrales (Ithaca)
Plataforma H2/Sw Distribuida Para El Procesamiento Inteligente de Información Sensorial Heterogenea en Aplicaciones de Supervisión de Grandes Espacios Naturales
Hyperspectral Imaging Cancer Detection (HELICoiD)
Publicación seriada: Sensors 
Resumen: Hyperspectral imaging (HSI) is a non-ionizing and non-contact imaging technique capable of obtaining more information than conventional RGB (red green blue) imaging. In the medical field, HSI has commonly been investigated due to its great potential for diagnostic and surgical guidance purposes. However, the large amount of information provided by HSI normally contains redundant or non-relevant information, and it is extremely important to identify the most relevant wavelengths for a certain application in order to improve the accuracy of the predictions and reduce the execution time of the classification algorithm. Additionally, some wavelengths can contain noise and removing such bands can improve the classification stage. The work presented in this paper aims to identify such relevant spectral ranges in the visual-and-near-infrared (VNIR) region for an accurate detection of brain cancer using in vivo hyperspectral images. A methodology based on optimization algorithms has been proposed for this task, identifying the relevant wavelengths to achieve the best accuracy in the classification results obtained by a supervised classifier (support vector machines), and employing the lowest possible number of spectral bands. The results demonstrate that the proposed methodology based on the genetic algorithm optimization slightly improves the accuracy of the tumor identification in ~5%, using only 48 bands, with respect to the reference results obtained with 128 bands, offering the possibility of developing customized acquisition sensors that could provide real-time HS imaging. The most relevant spectral ranges found comprise between 440.5–465.96 nm, 498.71–509.62 nm, 556.91–575.1 nm, 593.29–615.12 nm, 636.94–666.05 nm, 698.79–731.53 nm and 884.32–902.51 nm.
URI: http://hdl.handle.net/10553/63426
ISSN: 1424-8220
DOI: 10.3390/s19245481
Fuente: Sensors [1424-8220], v. 19 (24), artículo 5481
Colección:Artículos
miniatura
Adobe PDF (15,07 MB)
Vista completa

Citas SCOPUSTM   

40
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

33
actualizado el 15-dic-2024

Visitas

122
actualizado el 15-jun-2024

Descargas

98
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.