Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/63426
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Martínez Vega, Beatriz | en_US |
dc.contributor.author | León Martín, Sonia Raquel | en_US |
dc.contributor.author | Fabelo Gómez, Himar Antonio | en_US |
dc.contributor.author | Ortega, Samuel | en_US |
dc.contributor.author | Piñeiro, Juan F. | en_US |
dc.contributor.author | Zbigniew Szolna,Adam | en_US |
dc.contributor.author | Hernandez, Maria | en_US |
dc.contributor.author | Espino, Carlos | en_US |
dc.contributor.author | O’shanahan, Aruma J. | en_US |
dc.contributor.author | Carrera, David | en_US |
dc.contributor.author | Bisshopp Alfonso, Sara | en_US |
dc.contributor.author | Sosa Pérez, Coralia De Las Nieve | en_US |
dc.contributor.author | Marquez, Mariano | en_US |
dc.contributor.author | Camacho, Rafael | en_US |
dc.contributor.author | de la Luz Plaza, Maria | en_US |
dc.contributor.author | Morera, Jesus | en_US |
dc.contributor.author | Marrero Callicó, Gustavo Iván | en_US |
dc.date.accessioned | 2020-01-22T10:49:37Z | - |
dc.date.available | 2020-01-22T10:49:37Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 1424-8220 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/63426 | - |
dc.description.abstract | Hyperspectral imaging (HSI) is a non-ionizing and non-contact imaging technique capable of obtaining more information than conventional RGB (red green blue) imaging. In the medical field, HSI has commonly been investigated due to its great potential for diagnostic and surgical guidance purposes. However, the large amount of information provided by HSI normally contains redundant or non-relevant information, and it is extremely important to identify the most relevant wavelengths for a certain application in order to improve the accuracy of the predictions and reduce the execution time of the classification algorithm. Additionally, some wavelengths can contain noise and removing such bands can improve the classification stage. The work presented in this paper aims to identify such relevant spectral ranges in the visual-and-near-infrared (VNIR) region for an accurate detection of brain cancer using in vivo hyperspectral images. A methodology based on optimization algorithms has been proposed for this task, identifying the relevant wavelengths to achieve the best accuracy in the classification results obtained by a supervised classifier (support vector machines), and employing the lowest possible number of spectral bands. The results demonstrate that the proposed methodology based on the genetic algorithm optimization slightly improves the accuracy of the tumor identification in ~5%, using only 48 bands, with respect to the reference results obtained with 128 bands, offering the possibility of developing customized acquisition sensors that could provide real-time HS imaging. The most relevant spectral ranges found comprise between 440.5–465.96 nm, 498.71–509.62 nm, 556.91–575.1 nm, 593.29–615.12 nm, 636.94–666.05 nm, 698.79–731.53 nm and 884.32–902.51 nm. | en_US |
dc.language | eng | en_US |
dc.relation | Identificación Hiperespectral de Tumores Cerebrales (Ithaca) | en_US |
dc.relation | Plataforma H2/Sw Distribuida Para El Procesamiento Inteligente de Información Sensorial Heterogenea en Aplicaciones de Supervisión de Grandes Espacios Naturales | en_US |
dc.relation | Hyperspectral Imaging Cancer Detection (HELICoiD) | en_US |
dc.relation.ispartof | Sensors | en_US |
dc.source | Sensors [1424-8220], v. 19 (24), artículo 5481 | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Brain cancer | en_US |
dc.subject.other | Hyperspectral imaging | en_US |
dc.subject.other | Intraoperative imaging | en_US |
dc.subject.other | Feature selection | en_US |
dc.subject.other | Image-guided surgery | en_US |
dc.subject.other | Genetic algorithm | en_US |
dc.subject.other | Particle swarm optimization | en_US |
dc.subject.other | Ant colony optimization | en_US |
dc.subject.other | Support vector machine | en_US |
dc.subject.other | Machine learning | en_US |
dc.title | Most relevant spectral bands identification for brain cancer detection using hyperspectral imaging | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/s19245481 | en_US |
dc.identifier.pmid | 19 | - |
dc.identifier.scopus | 85076707257 | - |
dc.identifier.isi | 000517961400144 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.authorscopusid | 57212453744 | - |
dc.contributor.authorscopusid | 57212456639 | - |
dc.contributor.authorscopusid | 56405568500 | - |
dc.contributor.authorscopusid | 57189334144 | - |
dc.contributor.authorscopusid | 57189323824 | - |
dc.contributor.authorscopusid | 14032568700 | - |
dc.contributor.authorscopusid | 8616779200 | - |
dc.contributor.authorscopusid | 57208489676 | - |
dc.contributor.authorscopusid | 57200532309 | - |
dc.contributor.authorscopusid | 55809751300 | - |
dc.contributor.authorscopusid | 57200531623 | - |
dc.contributor.authorscopusid | 57200524989 | - |
dc.contributor.authorscopusid | 57208493219 | - |
dc.contributor.authorscopusid | 57213808968 | - |
dc.contributor.authorscopusid | 57208573686 | - |
dc.contributor.authorscopusid | 35466252100 | - |
dc.contributor.authorscopusid | 56006321500 | - |
dc.identifier.issue | 24 | - |
dc.description.firstpage | 5481 | en_US |
dc.relation.volume | 19 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 34693328 | - |
dc.contributor.daisngid | 12737463 | - |
dc.contributor.daisngid | 34770098 | - |
dc.contributor.daisngid | 31939674 | - |
dc.contributor.daisngid | 1781336 | - |
dc.contributor.daisngid | 2864016 | - |
dc.contributor.daisngid | 28444987 | - |
dc.contributor.daisngid | 35035971 | - |
dc.contributor.daisngid | 21855700 | - |
dc.contributor.daisngid | 526984 | - |
dc.contributor.daisngid | 12808177 | - |
dc.contributor.daisngid | 9431271 | - |
dc.contributor.daisngid | 29827313 | - |
dc.contributor.daisngid | 2153004 | - |
dc.contributor.daisngid | 9355820 | - |
dc.contributor.daisngid | 5142172 | - |
dc.contributor.daisngid | 35033594 | - |
dc.description.numberofpages | 28 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Martinez, B | - |
dc.contributor.wosstandard | WOS:Leon, R | - |
dc.contributor.wosstandard | WOS:Fabelo, H | - |
dc.contributor.wosstandard | WOS:Ortega, S | - |
dc.contributor.wosstandard | WOS:Pineiro, JF | - |
dc.contributor.wosstandard | WOS:Szolna, A | - |
dc.contributor.wosstandard | WOS:Hernandez, M | - |
dc.contributor.wosstandard | WOS:Espino, C | - |
dc.contributor.wosstandard | WOS:O'Shanahan, AJ | - |
dc.contributor.wosstandard | WOS:Carrera, D | - |
dc.contributor.wosstandard | WOS:Bisshopp, S | - |
dc.contributor.wosstandard | WOS:Sosa, C | - |
dc.contributor.wosstandard | WOS:Marquez, M | - |
dc.contributor.wosstandard | WOS:Camacho, R | - |
dc.contributor.wosstandard | WOS:Plaza, MD | - |
dc.contributor.wosstandard | WOS:Morera, J | - |
dc.contributor.wosstandard | WOS:Callico, GM | - |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 0,653 | |
dc.description.jcr | 3,275 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Telemática | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ciencias Médicas y Quirúrgicas | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0001-7835-9660 | - |
crisitem.author.orcid | 0000-0002-4287-3200 | - |
crisitem.author.orcid | 0000-0002-9794-490X | - |
crisitem.author.orcid | 0000-0002-7519-954X | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Martínez Vega, Beatriz | - |
crisitem.author.fullName | León Martín,Sonia Raquel | - |
crisitem.author.fullName | Fabelo Gómez, Himar Antonio | - |
crisitem.author.fullName | Ortega Sarmiento,Samuel | - |
crisitem.author.fullName | Zbigniew Szolna,Adam | - |
crisitem.author.fullName | Bisshopp Alfonso, Sara | - |
crisitem.author.fullName | Sosa Pérez, Coralia De Las Nieve | - |
crisitem.author.fullName | Camacho Galán, Rafael | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
38
checked on Dec 8, 2024
WEB OF SCIENCETM
Citations
33
checked on Dec 8, 2024
Page view(s)
122
checked on Jun 15, 2024
Download(s)
98
checked on Jun 15, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.