Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/61569
Título: | Gender classification on 2D human skeleton | Autores/as: | Barra, Paola Bisogni, Carmen Nappi, Michele Freire-Obregon, David Castrillon-Santana, Modesto NaitAli, A |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Gender classification Gait analysis Supervised learning |
Fecha de publicación: | 2019 | Conferencia: | 3rd International Conference on Bio-engineering for Smart Technologies (BioSMART) 3rd International Conference on Bio-Engineering for Smart Technologies, BioSMART 2019 |
Resumen: | Soft bimetrics has become a trending research topic over the past decade. In last years, the increase of new technologies such as the wearable camera devices has introduced a new challenge into the gender classification problem. In this sense, the ability to classify the gender not by an image but by the 2D estimated skeleton points is considered in this paper. Our experiments show that the human gender can be classified just considering the pose information provided by the body pose information. The proposed method have shown a remarkable performance on a dataset where subjects and camera are in movement. | URI: | http://hdl.handle.net/10553/61569 | DOI: | 10.1109/BIOSMART.2019.8734198 | Fuente: | 2019 3rd International Conference On Bio-Engineering For Smart Technologies (Biosmart) |
Colección: | Actas de congresos |
Citas SCOPUSTM
26
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
10
actualizado el 24-nov-2024
Visitas
86
actualizado el 03-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.