Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/61569
Título: Gender classification on 2D human skeleton
Autores/as: Barra, Paola
Bisogni, Carmen
Nappi, Michele
Freire-Obregon, David 
Castrillon-Santana, Modesto 
NaitAli, A
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Gender classification
Gait analysis
Supervised learning
Fecha de publicación: 2019
Conferencia: 3rd International Conference on Bio-engineering for Smart Technologies (BioSMART) 
3rd International Conference on Bio-Engineering for Smart Technologies, BioSMART 2019 
Resumen: Soft bimetrics has become a trending research topic over the past decade. In last years, the increase of new technologies such as the wearable camera devices has introduced a new challenge into the gender classification problem. In this sense, the ability to classify the gender not by an image but by the 2D estimated skeleton points is considered in this paper. Our experiments show that the human gender can be classified just considering the pose information provided by the body pose information. The proposed method have shown a remarkable performance on a dataset where subjects and camera are in movement.
URI: http://hdl.handle.net/10553/61569
DOI: 10.1109/BIOSMART.2019.8734198
Fuente: 2019 3rd International Conference On Bio-Engineering For Smart Technologies (Biosmart)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

26
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

10
actualizado el 17-nov-2024

Visitas

86
actualizado el 03-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.