Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/60255
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cristobal, Teresa | en_US |
dc.contributor.author | Padron, Gabino | en_US |
dc.contributor.author | Quesada-Arencibia, Alexis | en_US |
dc.contributor.author | Alayón, Francisco | en_US |
dc.contributor.author | de Blasio, Gabriel | en_US |
dc.contributor.author | Garcia, Carmelo R. | en_US |
dc.date.accessioned | 2020-01-17T11:29:20Z | - |
dc.date.available | 2020-01-17T11:29:20Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 1424-8220 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/60255 | - |
dc.description.abstract | In road-based mass transit systems, travel time is a key factor in providing quality of service. This article proposes a method of predicting travel time for this type of transport system. This method estimates travel time by taking into account its historical behaviour, represented by historical profiles, and the current behaviour recorded on the public transport vehicle for which the prediction is to be made. The model uses the k-medoids clustering algorithm to obtain historical travel time profiles. A relevant feature of the model is that it does not require recent travel time data from other vehicles. For this reason, the proposed model may be used in intercity transport contexts in which service planning is carried out according to timetables. The proposed model has been tested with two real cases of intercity public transport routes and from the results obtained we may conclude that, in general, the average error of the predictions is around 13% compared to the observed travel time values. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Sensors | en_US |
dc.source | Sensors [ISSN 1424-8220], v. 19 (13) | en_US |
dc.subject | 3327 Tecnología de los sistemas de transporte | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Road-based mass transit systems; intelligent transport systems; travel time prediction; clustering; automatic vehicle location | en_US |
dc.subject.other | Intelligent transport systems | en_US |
dc.subject.other | Travel time prediction | en_US |
dc.subject.other | Clustering | en_US |
dc.subject.other | Automatic vehicle location | en_US |
dc.title | Bus travel time prediction model based on profile similarity | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/s19132869 | |
dc.identifier.scopus | 85069261173 | |
dc.identifier.isi | 000477047500002 | - |
dc.contributor.authorscopusid | 56495304700 | |
dc.contributor.authorscopusid | 22986240200 | |
dc.contributor.authorscopusid | 13006053800 | |
dc.contributor.authorscopusid | 6506717943 | |
dc.contributor.authorscopusid | 55973970500 | |
dc.contributor.authorscopusid | 7401486323 | |
dc.identifier.issue | 13 | - |
dc.relation.volume | 19 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 4451412 | |
dc.contributor.daisngid | 2375619 | |
dc.contributor.daisngid | 6245793 | |
dc.contributor.daisngid | 1986574 | |
dc.contributor.daisngid | 31505238 | |
dc.contributor.daisngid | 1412377 | |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Cristobal, T | |
dc.contributor.wosstandard | WOS:Padron, G | |
dc.contributor.wosstandard | WOS:Quesada-Arencibia, A | |
dc.contributor.wosstandard | WOS:Alayon, F | |
dc.contributor.wosstandard | WOS:de Blasio, G | |
dc.contributor.wosstandard | WOS:Garcia, CR | |
dc.date.coverdate | Julio 2019 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 0,653 | |
dc.description.jcr | 3,275 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-5573-1156 | - |
crisitem.author.orcid | 0000-0002-8313-5124 | - |
crisitem.author.orcid | 0000-0002-7285-9194 | - |
crisitem.author.orcid | 0000-0002-6233-567X | - |
crisitem.author.orcid | 0000-0003-1433-3730 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Padrón Morales, Gabino | - |
crisitem.author.fullName | Quesada Arencibia, Francisco Alexis | - |
crisitem.author.fullName | Alayón Hernández,Francisco Javier | - |
crisitem.author.fullName | De Blasio, Gabriele Salvatore | - |
crisitem.author.fullName | García Rodríguez, Carmelo Rubén | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.