Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/60255
DC FieldValueLanguage
dc.contributor.authorCristobal, Teresaen_US
dc.contributor.authorPadron, Gabinoen_US
dc.contributor.authorQuesada-Arencibia, Alexisen_US
dc.contributor.authorAlayón, Franciscoen_US
dc.contributor.authorde Blasio, Gabrielen_US
dc.contributor.authorGarcia, Carmelo R.en_US
dc.date.accessioned2020-01-17T11:29:20Z-
dc.date.available2020-01-17T11:29:20Z-
dc.date.issued2019en_US
dc.identifier.issn1424-8220en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/60255-
dc.description.abstractIn road-based mass transit systems, travel time is a key factor in providing quality of service. This article proposes a method of predicting travel time for this type of transport system. This method estimates travel time by taking into account its historical behaviour, represented by historical profiles, and the current behaviour recorded on the public transport vehicle for which the prediction is to be made. The model uses the k-medoids clustering algorithm to obtain historical travel time profiles. A relevant feature of the model is that it does not require recent travel time data from other vehicles. For this reason, the proposed model may be used in intercity transport contexts in which service planning is carried out according to timetables. The proposed model has been tested with two real cases of intercity public transport routes and from the results obtained we may conclude that, in general, the average error of the predictions is around 13% compared to the observed travel time values.en_US
dc.languageengen_US
dc.relation.ispartofSensorsen_US
dc.sourceSensors [ISSN 1424-8220], v. 19 (13)en_US
dc.subject3327 Tecnología de los sistemas de transporteen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherRoad-based mass transit systems; intelligent transport systems; travel time prediction; clustering; automatic vehicle locationen_US
dc.subject.otherIntelligent transport systemsen_US
dc.subject.otherTravel time predictionen_US
dc.subject.otherClusteringen_US
dc.subject.otherAutomatic vehicle locationen_US
dc.titleBus travel time prediction model based on profile similarityen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s19132869
dc.identifier.scopus85069261173
dc.identifier.isi000477047500002-
dc.contributor.authorscopusid56495304700
dc.contributor.authorscopusid22986240200
dc.contributor.authorscopusid13006053800
dc.contributor.authorscopusid6506717943
dc.contributor.authorscopusid55973970500
dc.contributor.authorscopusid7401486323
dc.identifier.issue13-
dc.relation.volume19-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid4451412
dc.contributor.daisngid2375619
dc.contributor.daisngid6245793
dc.contributor.daisngid1986574
dc.contributor.daisngid31505238
dc.contributor.daisngid1412377
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Cristobal, T
dc.contributor.wosstandardWOS:Padron, G
dc.contributor.wosstandardWOS:Quesada-Arencibia, A
dc.contributor.wosstandardWOS:Alayon, F
dc.contributor.wosstandardWOS:de Blasio, G
dc.contributor.wosstandardWOS:Garcia, CR
dc.date.coverdateJulio 2019
dc.identifier.ulpgces
dc.description.sjr0,653
dc.description.jcr3,275
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-5573-1156-
crisitem.author.orcid0000-0002-8313-5124-
crisitem.author.orcid0000-0002-7285-9194-
crisitem.author.orcid0000-0002-6233-567X-
crisitem.author.orcid0000-0003-1433-3730-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNamePadrón Morales, Gabino-
crisitem.author.fullNameQuesada Arencibia, Francisco Alexis-
crisitem.author.fullNameAlayón Hernández,Francisco Javier-
crisitem.author.fullNameDe Blasio, Gabriele Salvatore-
crisitem.author.fullNameGarcía Rodríguez, Carmelo Rubén-
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (1,53 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.