Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/60255
Título: Bus travel time prediction model based on profile similarity
Autores/as: Cristobal, Teresa
Padron, Gabino 
Quesada-Arencibia, Alexis 
Alayón, Francisco 
de Blasio, Gabriel 
Garcia, Carmelo R. 
Clasificación UNESCO: 3327 Tecnología de los sistemas de transporte
120304 Inteligencia artificial
Palabras clave: Road-based mass transit systems; intelligent transport systems; travel time prediction; clustering; automatic vehicle location
Intelligent transport systems
Travel time prediction
Clustering
Automatic vehicle location
Fecha de publicación: 2019
Publicación seriada: Sensors 
Resumen: In road-based mass transit systems, travel time is a key factor in providing quality of service. This article proposes a method of predicting travel time for this type of transport system. This method estimates travel time by taking into account its historical behaviour, represented by historical profiles, and the current behaviour recorded on the public transport vehicle for which the prediction is to be made. The model uses the k-medoids clustering algorithm to obtain historical travel time profiles. A relevant feature of the model is that it does not require recent travel time data from other vehicles. For this reason, the proposed model may be used in intercity transport contexts in which service planning is carried out according to timetables. The proposed model has been tested with two real cases of intercity public transport routes and from the results obtained we may conclude that, in general, the average error of the predictions is around 13% compared to the observed travel time values.
URI: http://hdl.handle.net/10553/60255
ISSN: 1424-8220
DOI: 10.3390/s19132869
Fuente: Sensors [ISSN 1424-8220], v. 19 (13)
Colección:Artículos
miniatura
pdf
Adobe PDF (1,53 MB)
Vista completa

Citas SCOPUSTM   

20
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

15
actualizado el 15-dic-2024

Visitas

148
actualizado el 28-sep-2024

Descargas

111
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.