Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/59992
DC FieldValueLanguage
dc.contributor.authorBarra, Paolaen_US
dc.contributor.authorBisogni, Carmenen_US
dc.contributor.authorNappi, Micheleen_US
dc.contributor.authorFreire-Obregón, Daviden_US
dc.contributor.authorCastrillón-Santana, Modestoen_US
dc.date.accessioned2019-12-29T10:43:40Z-
dc.date.available2019-12-29T10:43:40Z-
dc.date.issued2019en_US
dc.identifier.isbn978-981-15-1303-9-
dc.identifier.issn1865-0929en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/59992-
dc.description.abstractGender Classification (GC) is a natural ability that belongs to the human beings. Recent improvements in computer vision provide the possibility to extract information for different classification/recognition purposes. Gender is a soft biometrics useful in video surveillance, especially in uncontrolled contexts such as low-light environments, with arbitrary poses, facial expressions, occlusions and motion blur. In this work we present a methodology for the construction of a gait analyzer. The methodology is divided into three major steps: (1) data extraction, where body keypoints are extracted from video sequences; (2) feature creation, where body features are constructed using body keypoints; and (3) classifier selection when such data are used to train four different classifiers in order to determine the one that best performs. The results are analyzed on the dataset Gotcha, characterized by user and camera either in motion.en_US
dc.languageengen_US
dc.relation.ispartofCommunications in Computer and Information Scienceen_US
dc.sourceCommunications in Computer and Information Science [ISSN 1865-0929], v. 1123 CCIS, p. 180-190en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherGender Classificationen_US
dc.subject.otherGait analysisen_US
dc.subject.otherSupervised learningen_US
dc.subject.otherSVCen_US
dc.subject.otherRandom foresten_US
dc.subject.otherAdaBoosten_US
dc.subject.otherKNNen_US
dc.titleGait analysis for gender classification in forensicsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.relation.conference5th International Conference on Dependability in Sensor, Cloud, and Big Data Systems and Applications, DependSys 2019
dc.identifier.doi10.1007/978-981-15-1304-6_15en_US
dc.identifier.scopus85076426222-
dc.contributor.authorscopusid57205195650-
dc.contributor.authorscopusid57205194846-
dc.contributor.authorscopusid6603906020-
dc.contributor.authorscopusid23396618800-
dc.contributor.authorscopusid57198776493-
dc.description.lastpage190en_US
dc.description.firstpage180en_US
dc.relation.volume1123 CCISen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.conferenceidevents121673-
dc.identifier.ulpgces
dc.description.sjr0,188
dc.description.sjrqQ3
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate12-11-2019-
crisitem.event.eventsenddate15-11-2019-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.