Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/59992
Título: | Gait analysis for gender classification in forensics | Autores/as: | Barra, Paola Bisogni, Carmen Nappi, Michele Freire-Obregón, David Castrillón-Santana, Modesto |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Gender Classification Gait analysis Supervised learning SVC Random forest, et al. |
Fecha de publicación: | 2019 | Publicación seriada: | Communications in Computer and Information Science | Conferencia: | 5th International Conference on Dependability in Sensor, Cloud, and Big Data Systems and Applications, DependSys 2019 | Resumen: | Gender Classification (GC) is a natural ability that belongs to the human beings. Recent improvements in computer vision provide the possibility to extract information for different classification/recognition purposes. Gender is a soft biometrics useful in video surveillance, especially in uncontrolled contexts such as low-light environments, with arbitrary poses, facial expressions, occlusions and motion blur. In this work we present a methodology for the construction of a gait analyzer. The methodology is divided into three major steps: (1) data extraction, where body keypoints are extracted from video sequences; (2) feature creation, where body features are constructed using body keypoints; and (3) classifier selection when such data are used to train four different classifiers in order to determine the one that best performs. The results are analyzed on the dataset Gotcha, characterized by user and camera either in motion. | URI: | http://hdl.handle.net/10553/59992 | ISBN: | 978-981-15-1303-9 | ISSN: | 1865-0929 | DOI: | 10.1007/978-981-15-1304-6_15 | Fuente: | Communications in Computer and Information Science [ISSN 1865-0929], v. 1123 CCIS, p. 180-190 |
Colección: | Artículos |
Citas SCOPUSTM
18
actualizado el 24-nov-2024
Visitas
195
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.