Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/59992
Título: Gait analysis for gender classification in forensics
Autores/as: Barra, Paola
Bisogni, Carmen
Nappi, Michele
Freire-Obregón, David 
Castrillón-Santana, Modesto 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Gender Classification
Gait analysis
Supervised learning
SVC
Random forest, et al.
Fecha de publicación: 2019
Publicación seriada: Communications in Computer and Information Science 
Conferencia: 5th International Conference on Dependability in Sensor, Cloud, and Big Data Systems and Applications, DependSys 2019 
Resumen: Gender Classification (GC) is a natural ability that belongs to the human beings. Recent improvements in computer vision provide the possibility to extract information for different classification/recognition purposes. Gender is a soft biometrics useful in video surveillance, especially in uncontrolled contexts such as low-light environments, with arbitrary poses, facial expressions, occlusions and motion blur. In this work we present a methodology for the construction of a gait analyzer. The methodology is divided into three major steps: (1) data extraction, where body keypoints are extracted from video sequences; (2) feature creation, where body features are constructed using body keypoints; and (3) classifier selection when such data are used to train four different classifiers in order to determine the one that best performs. The results are analyzed on the dataset Gotcha, characterized by user and camera either in motion.
URI: http://hdl.handle.net/10553/59992
ISBN: 978-981-15-1303-9
ISSN: 1865-0929
DOI: 10.1007/978-981-15-1304-6_15
Fuente: Communications in Computer and Information Science [ISSN 1865-0929], v. 1123 CCIS, p. 180-190
Colección:Artículos
Vista completa

Citas SCOPUSTM   

18
actualizado el 24-nov-2024

Visitas

195
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.