Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/58416
Título: Assessment of Hyperspectral Sharpening Methods for the Monitoring of Natural Areas Using Multiplatform Remote Sensing Imagery
Autores/as: Marcello, Javier 
Ibarrola-Ulzurrun, Edurne 
Gonzalo Martin,Consuelo 
Chanussot, Jocelyn
Vivone, Gemine
Clasificación UNESCO: 250616 Teledetección (Geología)
Palabras clave: CASI
Classification
Hyperion
Hyperspectral (HS)
Image fusion, et al.
Fecha de publicación: 2019
Publicación seriada: IEEE Transactions on Geoscience and Remote Sensing 
Resumen: The use of cutting-edge geospatial technologies to monitor ecosystems and the development of tailored tools for assessing such natural areas is a fundamental task. In this context, the growing availability of hyperspectral (HS) imagery from satellite and aerial platforms can provide valuable information for the sustainable management of ecosystems. However, in some cases, the spectral richness provided by HS sensors is at the expense of spatial quality. To alleviate this inconvenience, which can be critical to monitor some heterogeneous and mixed natural areas, a number of HS sharpening techniques have been developed to increase the spatial resolution while trying to preserve the spectral content. This image processing field has attracted the interest of the scientific community, and many research studies have been conducted to assess the performance of different HS sharpening algorithms. In the last decade, however, many comparative studies rely upon simulated data. In this work, the challenging application of sharpening methods in real situations using multiplatform or multisensor data is also addressed. Thus, experiments with real data have been conducted, in addition to a thorough assessment of HS sharpening techniques using simulated imagery in scenarios with different spatial resolution ratios and registration errors. In particular, airborne and satellite HS imageries have been pansharpened with drone, orthophotos, and satellite high spatial resolution data evaluating 11 fusion algorithms. After a comprehensive analysis, considering different visual and quantitative quality indicators, the algorithm characteristics have been summarized and the methods with higher performance and robustness have been identified.
URI: http://hdl.handle.net/10553/58416
ISSN: 0196-2892
DOI: 10.1109/TGRS.2019.2918932
Fuente: IEEE Transactions On Geoscience And Remote Sensing [ISSN 0196-2892], v. 57 (10), p. 8208-8222
Colección:Artículos
Vista completa

Citas SCOPUSTM   

15
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

14
actualizado el 24-nov-2024

Visitas

84
actualizado el 09-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.