Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/58416
Campo DC Valoridioma
dc.contributor.authorMarcello, Javieren_US
dc.contributor.authorIbarrola-Ulzurrun, Edurneen_US
dc.contributor.authorGonzalo Martin,Consueloen_US
dc.contributor.authorChanussot, Jocelynen_US
dc.contributor.authorVivone, Gemineen_US
dc.date.accessioned2019-12-16T10:54:41Z-
dc.date.available2019-12-16T10:54:41Z-
dc.date.issued2019en_US
dc.identifier.issn0196-2892en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/58416-
dc.description.abstractThe use of cutting-edge geospatial technologies to monitor ecosystems and the development of tailored tools for assessing such natural areas is a fundamental task. In this context, the growing availability of hyperspectral (HS) imagery from satellite and aerial platforms can provide valuable information for the sustainable management of ecosystems. However, in some cases, the spectral richness provided by HS sensors is at the expense of spatial quality. To alleviate this inconvenience, which can be critical to monitor some heterogeneous and mixed natural areas, a number of HS sharpening techniques have been developed to increase the spatial resolution while trying to preserve the spectral content. This image processing field has attracted the interest of the scientific community, and many research studies have been conducted to assess the performance of different HS sharpening algorithms. In the last decade, however, many comparative studies rely upon simulated data. In this work, the challenging application of sharpening methods in real situations using multiplatform or multisensor data is also addressed. Thus, experiments with real data have been conducted, in addition to a thorough assessment of HS sharpening techniques using simulated imagery in scenarios with different spatial resolution ratios and registration errors. In particular, airborne and satellite HS imageries have been pansharpened with drone, orthophotos, and satellite high spatial resolution data evaluating 11 fusion algorithms. After a comprehensive analysis, considering different visual and quantitative quality indicators, the algorithm characteristics have been summarized and the methods with higher performance and robustness have been identified.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensingen_US
dc.sourceIEEE Transactions On Geoscience And Remote Sensing [ISSN 0196-2892], v. 57 (10), p. 8208-8222en_US
dc.subject250616 Teledetección (Geología)en_US
dc.subject.otherCASIen_US
dc.subject.otherClassificationen_US
dc.subject.otherHyperionen_US
dc.subject.otherHyperspectral (HS)en_US
dc.subject.otherImage fusionen_US
dc.subject.otherOrthophotosen_US
dc.subject.otherPansharpeningen_US
dc.titleAssessment of Hyperspectral Sharpening Methods for the Monitoring of Natural Areas Using Multiplatform Remote Sensing Imageryen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TGRS.2019.2918932
dc.identifier.scopus85074611556
dc.identifier.isi000489829200069-
dc.contributor.authorscopusid6602158797
dc.contributor.authorscopusid57193098496
dc.contributor.authorscopusid36561411500
dc.contributor.authorscopusid6602159365
dc.contributor.authorscopusid42962520400
dc.identifier.eissn1558-0644-
dc.description.lastpage8222-
dc.identifier.issue10-
dc.description.firstpage8208-
dc.relation.volume57-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid702897
dc.contributor.daisngid5530081
dc.contributor.daisngid1398100
dc.contributor.daisngid31284691
dc.contributor.daisngid675377
dc.contributor.wosstandardWOS:Marcello, J
dc.contributor.wosstandardWOS:Ibarrola-Ulzurrun, E
dc.contributor.wosstandardWOS:Gonzalo-Martin, C
dc.contributor.wosstandardWOS:Chanussot, J
dc.contributor.wosstandardWOS:Vivone, G
dc.date.coverdateOctubre 2019
dc.identifier.ulpgces
dc.description.sjr2,616
dc.description.jcr5,855
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.orcid0000-0001-5062-7491-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameIbarrola Ulzurrun, Edurne-
crisitem.author.fullNameGonzalo Martin,Consuelo-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

15
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

14
actualizado el 24-nov-2024

Visitas

84
actualizado el 09-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.