Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/58306
Título: Cancer detection using hyperspectral imaging and evaluation of the superficial tumor margin variance with depth
Autores/as: Halicek, Martin
Fabelo Gómez, Himar Antonio 
Ortega Sarmiento, Samuel 
Little, James V.
Wang, Xu
Chen, Amy Y.
Marrero Callicó, Gustavo Iván 
Myers, Larry L.
Sumer, Baran D.
Fei, Baowei
Coordinadores/as, Directores/as o Editores/as: Fei, Baowei
Linte, Cristian A.
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Squamous-Cell Carcinoma
Surgery
Tongue
Head
Hyperspectral Imaging, et al.
Fecha de publicación: 2019
Proyectos: Identificación Hiperespectral de Tumores Cerebrales (Ithaca)
Publicación seriada: Progress in Biomedical Optics and Imaging - Proceedings of SPIE 
Conferencia: Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling 
Resumen: Head and neck squamous cell carcinoma (SCCa) is primarily managed by surgical resection. Recurrence rates after surgery can be as high as 55% if residual cancer is present. In this study, hyperspectral imaging (HSI) is evaluated for detection of SCCa in ex-vivo surgical specimens. Several methods are investigated, including convolutional neural networks (CNNs) and a spectral-spatial variant of support vector machines. Quantitative results demonstrate that additional processing and unsupervised filtering can improve CNN results to achieve optimal performance. Classifying regions that include specular glare, the average AUC is increased from 0.73 [0.71, 0.75 (95% confidence interval)] to 0.81 [0.80, 0.83] through an unsupervised filtering and majority voting method described. The wavelengths of light used in HSI can penetrate different depths into biological tissue, while the cancer margin may change with depth and create uncertainty in the ground-truth. Through serial histological sectioning, the variance in cancer-margin with depth is also investigated and paired with qualitative classification heat maps using the methods proposed for the testing group SCC patients.
URI: http://hdl.handle.net/10553/58306
ISBN: 9781510625495
ISSN: 1605-7422
DOI: 10.1117/12.2512985
Fuente: Progress in Biomedical Optics and Imaging - Proceedings of SPIE [ISSN 1605-7422], v. 10951, 109511A
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

13
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

10
actualizado el 24-nov-2024

Visitas

102
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.