Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/58306
Título: | Cancer detection using hyperspectral imaging and evaluation of the superficial tumor margin variance with depth | Autores/as: | Halicek, Martin Fabelo Gómez, Himar Antonio Ortega Sarmiento, Samuel Little, James V. Wang, Xu Chen, Amy Y. Marrero Callicó, Gustavo Iván Myers, Larry L. Sumer, Baran D. Fei, Baowei |
Coordinadores/as, Directores/as o Editores/as: | Fei, Baowei Linte, Cristian A. |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Squamous-Cell Carcinoma Surgery Tongue Head Hyperspectral Imaging, et al. |
Fecha de publicación: | 2019 | Proyectos: | Identificación Hiperespectral de Tumores Cerebrales (Ithaca) | Publicación seriada: | Progress in Biomedical Optics and Imaging - Proceedings of SPIE | Conferencia: | Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling | Resumen: | Head and neck squamous cell carcinoma (SCCa) is primarily managed by surgical resection. Recurrence rates after surgery can be as high as 55% if residual cancer is present. In this study, hyperspectral imaging (HSI) is evaluated for detection of SCCa in ex-vivo surgical specimens. Several methods are investigated, including convolutional neural networks (CNNs) and a spectral-spatial variant of support vector machines. Quantitative results demonstrate that additional processing and unsupervised filtering can improve CNN results to achieve optimal performance. Classifying regions that include specular glare, the average AUC is increased from 0.73 [0.71, 0.75 (95% confidence interval)] to 0.81 [0.80, 0.83] through an unsupervised filtering and majority voting method described. The wavelengths of light used in HSI can penetrate different depths into biological tissue, while the cancer margin may change with depth and create uncertainty in the ground-truth. Through serial histological sectioning, the variance in cancer-margin with depth is also investigated and paired with qualitative classification heat maps using the methods proposed for the testing group SCC patients. | URI: | http://hdl.handle.net/10553/58306 | ISBN: | 9781510625495 | ISSN: | 1605-7422 | DOI: | 10.1117/12.2512985 | Fuente: | Progress in Biomedical Optics and Imaging - Proceedings of SPIE [ISSN 1605-7422], v. 10951, 109511A |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.