Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/58282
Título: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications
Autores/as: Lazcano, Raquel
Madronal, Daniel
Florimbi, Giordana
Sancho, Jaime
Sanchez, Sergio
León Martín, Sonia Raquel 
Fabelo Gómez, Himar Antonio 
Ortega Sarmiento, Samuel 
Torti, Emanuele
Salvador, Ruben
Marrero Martín, Margarita Luisa 
Leporati, Francesco
Juarez, Eduardo
Marrero Callicó, Gustavo Iván 
Sanz, Cesar
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Hyperspectral imaging
High performance computing
Parallel processing
Parallel architectures
Image processing, et al.
Fecha de publicación: 2019
Proyectos: Identificación Hiperespectral de Tumores Cerebrales (Ithaca) 
Plataforma H2/Sw Distribuida Para El Procesamiento Inteligente de Información Sensorial Heterogenea en Aplicaciones de Supervisión de Grandes Espacios Naturales 
Publicación seriada: IEEE Access 
Resumen: Hyperspectral (HS) imaging presents itself as a non-contact, non-ionizing and non-invasive technique, proven to be suitable for medical diagnosis. However, the volume of information contained in these images makes difficult providing the surgeon with information about the boundaries in real-time. To that end, High-Performance-Computing (HPC) platforms become necessary. This paper presents a comparison between the performances provided by five different HPC platforms while processing a spatial-spectral approach to classify HS images, assessing their main benefits and drawbacks. To provide a complete study, two different medical applications, with two different requirements, have been analyzed. The first application consists of HS images taken from neurosurgical operations; the second one presents HS images taken from dermatological interventions. While the main constraint for neurosurgical applications is the processing time, in other environments, as the dermatological one, other requirements can be considered. In that sense, energy efficiency is becoming a major challenge, since this kind of applications are usually developed as hand-held devices, thus depending on the battery capacity. These requirements have been considered to choose the target platforms: on the one hand, three of the most powerful Graphic Processing Units (GPUs) available in the market; and, on the other hand, a low-power GPU and a manycore architecture, both specifically thought for being used in battery-dependent environments.
URI: http://hdl.handle.net/10553/58282
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2019.2938708
Fuente: IEEE Access [ISSN 2169-3536], v. 7, p. 152316-152333, (2019)
Colección:Artículos
miniatura
pdf
Adobe PDF (2,62 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.