IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 13, 2019, accepted August 23, 2019, date of publication September 2, 2019, date of current version October 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938708

Parallel Implementations Assessment of
a Spatial-Spectral Classifier for Hyperspectral

Clinical Applications

RAQUEL LAZCANO “', DANIEL MADRONAL"1, GIORDANA FLORIMBI?, JAIME SANCHO ",
SERGIO SANCHEZ', RAQUEL LEON"“3, HIMAR FABELO 3, SAMUEL ORTEGA"3,
EMANUELE TORTI2, (Member, IEEE), RUBEN SALVADOR !, (Member, IEEE),

MARGARITA MARRERO-MARTIN3, FRANCESCO LEPORATI?, (Member, IEEE),

EDUARDO JUAREZ', (Member, IEEE), GUSTAVO M. CALLICO"“3, (Member, IEEE),

AND CESAR SANZ 1, (Senior Member, IEEE)

I Centre of Software Technologies and Multimedia Systems (CITSEM), Universidad Politécnica de Madrid (UPM), 28031 Madrid, Spain
2Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
3nstitute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain

Corresponding author: Raquel Lazcano (raquel.lazcano@upm.es)

This work was supported in part by the Spanish Government through the PLATINO project under Grant TEC2017-86722-C4-4-R, in part
by the Regional Government of Madrid through NEMESIS-3D-CM Project under Grant Y2018/BIO-4826, in part by the European
Commission through the FP7 Future and Emerging Technologies (FET) Open Program under Grant ICT-2011.9.2, in part by the European
Project HELICoiD under Grant 618080, in part by the Canary Islands Government through the Canarian Agency for Research, Innovation
and the Information Society (ACIISI) through the ITHaCA project Hyperespectral Identification of Brain Tumors under Grant Agreement
ProID2017010164, and in part by the Universidad Politécnica de Madrid through the Programa Propio under Contract RR01/2015 and
Contract RR01/2016. The work of S. Ortega was supported in part by the Agencia Canaria de Investigacion, Innovacion y Sociedad de la
Informacién (ACIISI) of the Conserjeria de Economia, Industria, Comercio y Conocimiento of the Gobierno de Canarias through the
European Social Fund (FSE) [POC 2014-2020, Eje 3 Tema Prioritario 74 (85%)].

ABSTRACT Hyperspectral (HS) imaging presents itself as a non-contact, non-ionizing and non-invasive
technique, proven to be suitable for medical diagnosis. However, the volume of information contained in
these images makes difficult providing the surgeon with information about the boundaries in real-time.
To that end, High-Performance-Computing (HPC) platforms become necessary. This paper presents a
comparison between the performances provided by five different HPC platforms while processing a spatial-
spectral approach to classify HS images, assessing their main benefits and drawbacks. To provide a complete
study, two different medical applications, with two different requirements, have been analyzed. The first
application consists of HS images taken from neurosurgical operations; the second one presents HS images
taken from dermatological interventions. While the main constraint for neurosurgical applications is the
processing time, in other environments, as the dermatological one, other requirements can be considered.
In that sense, energy efficiency is becoming a major challenge, since this kind of applications are usually
developed as hand-held devices, thus depending on the battery capacity. These requirements have been
considered to choose the target platforms: on the one hand, three of the most powerful Graphic Processing
Units (GPUs) available in the market; and, on the other hand, a low-power GPU and a manycore architecture,
both specifically thought for being used in battery-dependent environments.

INDEX TERMS Hyperspectral imaging, high performance computing, parallel processing, parallel architec-
tures, image processing, biomedical engineering, medical diagnostic imaging, cancer detection, supervised
classification, support vector machines, K-nearest neighbors, principal component analysis, graphic process-
ing unit, manycore.

I. INTRODUCTION
Hyperspectral Imaging (HSI) collects both spatial and spec-

tral high-resolution information, which is composed of a

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan Zhang

152316 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

wide range of wavelengths from across the electromagnetic
spectrum. HSI aims to identify and estimate the distribu-
tion of materials within a captured scene based on their
spectral signatures, which represent the normalized mea-
sured surface reflectance at each spectral band [1]. Although

VOLUME 7, 2019

https://orcid.org/0000-0002-2645-6749
https://orcid.org/0000-0001-5994-7440
https://orcid.org/0000-0001-8767-6596
https://orcid.org/0000-0002-4287-3200
https://orcid.org/0000-0002-9794-490X
https://orcid.org/0000-0002-7519-954X
https://orcid.org/0000-0002-0021-5808
https://orcid.org/0000-0002-3784-5504
https://orcid.org/0000-0002-2411-9132
https://orcid.org/0000-0002-2058-2373

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

IEEE Access

this technology was originally aimed at remote sensing
applications [2], nowadays it has spread to several research
fields like forensics [3], food inspection [4], recycling [5],
or medicine [6]-[8], among many others. Regarding med-
ical research, the ability to identify the materials within a
captured image has been applied in three different environ-
ments: in-vitro, ex-vivo and in-vivo studies —i.e., whether
the scene is obtained from a resected sample (in-vitro,
ex-vivo) [9]-[11] or directly acquired from the patient (in-
vivo) [12]-[15]. Specifically, there is a growing research
interest related to performing in-vivo HSI processing during
surgeries to help discerning between cancerous and healthy
tissues [16]—-[19]. In addition, in order to assist surgeons in
locating the margins of the tumor during the operation, a real-
time analysis of the acquired hyperspectral (HS) images is
required, considering as real-time the time needed by an HS
sensor to capture a new image, which will depend on the
capturing technology employed by the HS camera [20].

Traditionally, the methodologies proposed to classify each
pixel have been uniquely based on its spectrum, regardless
of the spatial information [21]. These pixel-wise method-
ologies can be divided into two categories: spectral feature
extraction and spectral classification. The former is based
on reducing the spectral dimensionality of the datasets by
applying transformations such as the Principal Component
Analysis (PCA) [22]. The latter aims to generate a classifi-
cation model to identify the pixels in relation with different
elements —commonly known as classes— existing within the
image and to depict the boundaries among these classes
in the feature space, hence assigning a class to each pixel
of the image [23]. In that sense, Support Vector Machines
(SVMs) provide robust classification performance when the
number of training samples is limited [23], which is common
in medical applications [24]. However, it has been recently
proven that the combination of both spectral and spatial
information for HSI processing can considerably improve
the classification results [18], [25]. Specifically, one possible
approach to deal with the so-called spatial-spectral (SS) clas-
sification aims at refining the pixel-wise classification results
by using a K-Nearest Neighbors (KNN) filtering process,
which uses both the pixel value and the spatial coordinates.
To do so, a one-band representation of the HS image is
required, in addition to the probability maps provided by the
pixel-wise classifier. Hence, this SS approach is composed of
three algorithms: the pixel-wise classifier, an algorithm for
obtaining the one-band representation of the image, and the
KNN filtering algorithm.

Currently, minimizing the processing time is a crucial task
to help medical doctors discriminate between cancerous and
healthy tissues. To reach real-time performance, the intrinsic
parallelism of this approach must be exploited. For instance,
the first two algorithms (PCA and SVM) shall finish before
KNN starts its execution. As these algorithms are indepen-
dent, they can be processed in parallel; in this way, KNN
can be executed as soon as possible. In addition to exploiting
the intrinsic parallelism of the proposed approach to meet the

VOLUME 7, 2019

real-time objective, the time required to process an HS image

needs to be minimized, which, in turn, requires an extensive

usage of computational resources. Right now, only High-

Performance Computing (HPC) architectures are able to pro-

vide enough computational power. Two main criteria will be

used in this paper to evaluate HPC platforms: processing time
and energy consumption. Even though the reduction of the

processing time compared to the sequential counterpart —i.e.,

the speedup— has traditionally been the metric to assess the

performance of HPC platforms, energy consumption has also
gained importance lately depending on the target application.

Although nowadays medical applications do not work under

energy constraints, it is easy to foresee future clinical appli-

cations where portable real-time HSI processing becomes

a tool to support clinical decisions [26], [27]. Therefore,

energy-efficient solutions would be advisable.

This paper is focused on the evaluation of the perfor-
mance and power consumption for two different HS medical
applications —with different constraints— implemented on a
low-power manycore-based platform and low-power, con-
sumer and scientific-computation Graphic Processing Unit
(GPU)-based platforms. The first application is the use of
HSI for the intraoperative identification and delineation of
in-vivo brain tumors, assisting neurosurgeons in the tumor
resection during the surgical procedures (from now on called
neurosurgical use case). In this application, the main goal
is to achieve the classification results in the lowest com-
putational time possible, providing near real-time results,
without having power limitations within the operating theater.
The second application aims to employ HSI for the early
detection of skin cancer by using an HS hand-held acquisition
and processing system (from now on called dermatological
use case). In this second case, the system is not intended
to be used during surgical procedures, hence, there is a
more relaxed deadline. However, this application requires
the processing system to work under energy constraints in
order to avoid external power connection, being an indepen-
dent and portable system. Therefore, an implementation with
high-energy efficiency would be advisable for this hand-held
device.

The main contributions of this paper can be summarized
as:

- The implementation of three different algorithms compos-
ing a spatial-spectral HS image classifier over different
HPC platforms.

- An assessment of these implementations both in terms of
processing time and power consumption.

- The use of standard metrics to compare all the implemen-
tations and all the platforms.

- The conclusions extracted from applying this metric to
assess the fitness of each platform as a function of power
consumption, processing time or both.

The rest of the paper is structured as follows. Section II
describes the database, the algorithms and the platforms
employed in this comparison. Afterwards, Section III
explains the algorithm implementations onto each platform

152317

IEEE Access

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

and Section IV presents and discusses the obtained results.
Finally, Section V draws the main conclusions of this
research.

Il. MATERIALS AND METHODS

As described before, the objective of this paper is to compare
the performance and power consumption of two different
HSI use cases (neurosurgical and dermatological use cases)
when implemented onto different high-performance acceler-
ators. This section provides the information needed to better
understand the scope of this paper.

A. HYPERSPECTRAL IMAGE DATABASE

A set of six in-vivo HS images have been employed as an
example to test the implementations presented in this paper.
Three of the images belong to in-vivo brain surface affected
by cancer and the other three belong to in-vivo human skin
lesions (normal moles in this case).

On the one hand, brain cancer images (neurosurgical use
case) were obtained at the University Hospital Doctor Negrin
of Las Palmas de Gran Canaria (Spain) from three different
patients with a confirmed grade IV glioblastoma tumor by
histopathology. These images were captured using the HS
acquisition system developed in [13], [19], and pre-processed
following the pre-processing chain presented in [19]. Four
steps compose the pre-processing chain: image calibration,
noise filtering, band averaging and pixel normalization. The
final HS cube is formed of 128 spectral bands, covering the
range between 450 and 900 nm [19]. The study protocol and
consent procedures were approved by the Comité Etico de
Investigacion Clinica-Comité de Etica en la Investigacion
(CEIC/CEI) of University Hospital Doctor Negrin and writ-
ten informed consent was obtained from all subjects. In this
use case, the classification goal is to differentiate between
tumor tissue and healthy tissue in the exposed brain surface.
In addition, two other classes are identified, involving blood
vessels and extravassated blood and the other elements, mate-
rials or substances presented in the scene (background).

On the other hand, the in-vivo HS dermatologic database
was obtained with a customized HS acquisition system. Three
different lesions from different parts of the body were cap-
tured from the same patient and were evaluated by a derma-
tologist, determining that the lesions were normal moles. The
customized HS acquisition system integrates an HS sensor
and a monochromatic (MC) sensor, being able to capture an
HS image and an MC image with a spatial resolution of 50 x
50 pixels and 1000 x 1000 pixels, respectively. Both the HS
and MC images are calibrated and subsequently fused. A final
synthetic HS image of 1000 x 1000 pixels and 125 spectral
bands is obtained. The synthetic HS image was pre-processed
with an image calibration and a noise filtering (removing the
extreme bands of the signature), obtaining a final HS cube
formed by 100 bands. In this case, the goal is to classify the
HS data to provide the dermatologist with a classification
map where the different regions in the pigmented lesion are
identified as well as the skin area. For the purpose of the work

152318

(d) (© ®

FIGURE 1. Synthetic RGB representations of the HS cubes. (a-c) RGB
representation of the HS brain image of PB1C1, PB2C1, PB3Cl1,
respectively. (d-f) RGB representation of the HS dermatologic image of
PD1C1, PD1C2, PD1C3, respectively.

TABLE 1. Specifications of the HS image database.

Image . Size Size

Dataset | [P5 | #Pixels (width x height x bands) | (MB)
PB1C1| 219,232 496 x 442 x 128 107.05

Brain | PB2C1 | 184,875 493 x 375 x 128 90.20
PB3C1| 124,033 329x377 x 128 60.56
PDICI1 | 1,000,000 1000 x 1000 x 100 381.00
Derma |PD1C2 1,000,000 1000 x 1000 x 100 381.00
PDIC3 | 1,000,000 1000 x 1000 x 100 381.00

developed in this paper, in these three images only benign
pigmented lesions have been included as HS data examples.

Fig. 1 shows the synthetic RGB images of the HS
cubes that define the database used in this study, while
Table 1 details the characteristics of each HS image. These
data can be downloaded in the supplementary material section
of the manuscript.

B. HARDWARE ACCELERATION PLATFORMS

This section provides a brief description of the high-
performance accelerators onto which the target applications
have been implemented. Due to the large volume of infor-
mation contained in HS images, there is a clear need of
high-performance computing platforms to fulfill real-time
requirements. Considering the two use cases under study,
it seems obvious that real-time is a strong requirement to help
surgeons during tumor resection. However, for the dermato-
logical case, this may not be the main requirement. Instead,
it would seem coherent that one of the main requirements for
this application could be the energy consumption, as it is not
difficult to foresee a future in which this kind of technologies
become portable. As a result, different accelerators based on
these requirements have been targeted, namely GPUs and
manycore platforms. The former ones have been widely used
in image processing, usually yielding the most competitive
results in terms of speedups. On the other hand, the latter
ones provide a solution in which energy consumption is a key
factor.

1) HIGH-POWER GPU PLATFORMS
This section presents the characteristics of some of the most
powerful GPUs currently available in the market, which

VOLUME 7, 2019

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

IEEE Access

gather more than one thousand processing cores and huge
memories, in the order of gigabytes. Three NVIDIA desktop
GPUs have been chosen in order to cover a wide range of
manycore architectures. In particular, authors evaluated one
board specifically developed for scientific computations and
two consumer GPUs.

The first one is a NVIDIA Tesla K40 GPU, equipped
with 2880 cores distributed among 15 Streaming Multipro-
cessors (SM). The working frequency is 0.875 GHz and the
total GDDRS memory is 12 GB, with a peak bandwidth
of 288 GB/s. This GPU is based on the NVIDIA Kepler archi-
tecture and it is connected to an Intel i7 3770 CPU (whose
working frequency is 3.40 GHz and the RAM memory is
8 GB) through a PCI Express 3.0.

Concerning the consumer GPUs, the tests have been car-
ried out on the NVIDIA GTX 1060 and the NVIDIA RTX
2080 devices. The former is equipped with 1280 cores, work-
ing at 1.78 GHz, and organized in 9 SM. It is character-
ized by 6 GB of GDDRS5 memory, with a peak bandwidth
of 192 GB/s, and it is based on the Pascal architecture. This
board is connected to an Intel i7 8700 CPU (whose working
frequency is 3.20 GHz and the RAM memory is 16 GB),
through a PCI Express 3.0. The latter is based on the Turing
architecture and it includes 2994 cores, organized in 46 SM.
The working frequency is 1.71 GHz while the GDDR6 mem-
ory is 8 GB, with a peak bandwidth of 448 GB/s. In this case,
the GPU is connected to an Intel 19 9900X (whose working
frequency is 3.50 GHz and the RAM memory is 128 GB)
through a PCI Express 3.0 interface.

2) LOW-POWER GPU PLATFORM

This section details the information related to a new family of
GPUs, with smaller computing capabilities, but also with con-
siderably lower power consumption. The selected platform is
the NVIDIA Jetson TX2 GPU that is built around the System
on Chip (SoC) Tegra X2, which comprises a quad-core ARM
Cortex-AS57 processor, a dual-core NVIDIA Denver 2 and a
NVIDIA Pascal GPU with 256 cores working at a maximum
frequency of 1.3 GHz and organized in 2 SM. Unlike discrete
GPUs, in this SoC, CPU and GPU share their main 8 GB
128-bit LPDDR4 57.6 GB/s memory, taking advantage of
heterogeneity and making possible to avoid heavy memory
transfers between CPU and GPU.

3) LOW-POWER MANYCORE PLATFORM

Finally, a manycore architecture, the MPPA-256-N manu-
factured by Kalray, was employed to compete with GPUs
while maintaining a low power consumption. The MPPA-
256-N architecture [28] is a single-chip manycore processor
that contains 256 processing cores divided in 16 compute
clusters whose working frequency can vary between 400 and
600 MHz. In addition, the communications between the
clusters and the external memory are managed by 2 quad-
core Input/Output (I/O) subsystems. On the other hand,
a Network-on-Chip (NoC) is in charge of handling the
communication and synchronization between the compute

VOLUME 7, 2019

TABLE 2. Specifications of the HS image database.

IFrequencyMemory|Bandwidth| Average

Platform|#Cores (GHz) (GB) (GB/s) |Power (W) CPU
Intel 17

Tesla K40| 2880 0.875 12 288 235 3770
GTX Intel i7

1060 1280 1.78 6 192 120 3700
RTX Intel 19
2080 2994 1.71 8 4438 277 9900X

Jet ARM
%S(‘;“ 256 1.3 8 57.6 75 | Cortex-

A57
MPPA- Intel 17

256-N 256 0.55 0.032 8 15 3820

clusters and the I/O subsystems. Regarding the structure of
each cluster, they include a Resource Management (RM)
core aimed at running the clusters operating system (clus-
terOS) and managing interrupts and events, a 2 MB local
memory and a Direct Memory Access (DMA) to trans-
fer data between the shared memory and the NoC. The
MPPA-256-N is connected to a host device with an
Intel 17-3820 running at 3.6 GHz.

4) PLATFORMS COMPARISON

To conclude this section, Table 2 shows a summary of
the main characteristics of each platform presented in this
section: three desktop GPUs, a low-power consumption GPU
and a manycore platform. As can be observed, the most
powerful devices are the three desktop GPUs. In the following
sections, the implementation and results for each platform
will be presented and compared, trying to find a tradeoff
between performance and power consumption.

C. HS SPATIAL-SPECTRAL (SS) FRAMEWORK

As described in the introduction, the novelty of SS classifica-
tion techniques is that they improve the spectral-based clas-
sification results by incorporating the contextual information
into the classifier model; in other words, they combine both
the pixel spectral value and its spatial coordinates. Specifi-
cally, Fig. 2 presents the block diagram of the SS approach
followed in this research work [18], [25]. This approach is
composed of two different stages: in the first one, a pixel-wise
classification —hereafter, P— and a one-band representation —
hereafter, /- of the image are obtained; after this stage, the
KNN filter is applied —hereafter, O— to generate a classifi-
cation map similar to the one shown in Fig. 2 (right), where
tumor is identified with red color, healthy tissue with green,
hypervascularized tissue with blue, and the other background
elements are in black. After this general overview of the SS
classification approach, next sections present a brief descrip-
tion of each algorithm included in this method: PCA, SVM
and KNN filtering.

1) SVM CLASSIFIER ALGORITHM
The objective of SVM is to classify the contents of a captured
scene using the information provided by the spectrum of

152319

IEEE Access

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

One Band I?
Representation |+
i

s

R\

Classification
Map
&\‘

4-Class
Probability Map

FIGURE 2. Block diagram of the SS classification framework.

each pixel [23]. As only the pixel spectrum is considered,
this classification can be applied to each pixel independently.
In this work, SVM computes the probability of each pixel to
belong to each element (or class) of the image. To do that,
the algorithm needs two stages: training and classification.

On the one hand, the training stage is in charge of ana-
lyzing a set of samples whose associate classes have been
defined a priori by an expert —in this case, a pathologist—.
Following a one-vs-one strategy, a set of hyperplanes capa-
ble of distinguishing among two of the classes under study
is generated. To define each hyperplane —hereafter binary
hyperplane—, the criterion applied is to maximize the distance
between the classes that it is distinguishing [29].

On the other hand, the classification stage assigns not only
a class for each pixel, but also the probability of each pixel to
belong to each class. To do so, three steps are needed, and
all of them follow a pixel-wise procedure. First, the algo-
rithm computes the distances to the binary hyperplanes and
their associated binary probabilities. Secondly, it combines
the binary probabilities, following the methodology exposed
in [30], which minimizes the implementation complexity.
Finally, it selects the class with the highest probability as
the one associated to the pixel in order to obtain a prelimi-
nary classification result, i.e., without including any spatial
filtering. Please, note that this last stage is only performed
when using SVM as a standalone algorithm; in this procedure,
it feeds the probabilities to the next algorithm. In [31], SVM
algorithm is explained in more detail.

2) PCA DIMENSIONAL REDUCTION ALGORITHM
As described before, hyperspectral images collect informa-
tion from across the electromagnetic spectrum, covering a
wide range of wavelengths. However, a drawback of this is
that this information is deeply correlated between adjacent
bands. PCA provides a methodology to minimize this cor-
relation by removing the redundancies among the spectral
bands, obtaining the projection that best represents the data
in a least-squares sense. To achieve this objective, PCA trans-
forms the original data by means of the eigenvectors of the
covariance matrix associated to the original image. As the
objective of this algorithm in this application is to obtain
a one-band representation of the image, after projecting the
image onto the eigenvectors, only the first component is kept.
PCA is divided into four main steps: (i) computation and
removal of the average of each band to center the image;

152320

(i) computation of the covariance matrix of the original
image; (iii) extraction of its eigenvectors; and (iv) projection
of the original image onto the eigenvectors subspace to keep
the first component. In this paper, the method selected for
extracting the eigenvectors is the Jacobi approach. It applies
successive planar rotations to the largest off-diagonal element
to zero it, approximating the original matrix to a diagonal
gathering the eigenvalues. These rotations are applied until
all the off-diagonal elements are smaller than a provided stop
condition. In [32], a description of this method is provided.

3) KNN FILTERING ALGORITHM
KNN filter has been extensively used in machine learning
applications for HSI [33]. There are several examples in the
recent literature [18], [25] that show how to use this filter to
improve the classification results provided by classifiers like
SVM. To do so, KNN refines the pixel-wise classification
probability maps generated by the SVM by matching and
averaging non-local neighborhoods. For every pixel in the
image, KNN first calculates the K nearest neighbors, and
later, it averages the probabilities obtained from the classifier.
To find the K nearest neighbors for a pixel, the distance
from that pixel to every other in the image needs to be com-
puted. To calculate them, both the spectral value of the pixel
(obtained from the one-band representation of the image)
and the spatial coordinates of the pixels are used. A balance
parameter, A, weights these two data: if A = 0, the spatial
information is not considered; on the contrary, the greater
the value of A, the greater the influence given to the local
neighborhood. Regarding the number of neighbors, K, to be
used, it should be highlighted that increasing its value would
also increase the computational cost. Consequently, in this
work these values have been set to A = 1 and K = 40, which
have been experimentally proven to be a good compromise,
as higher values of A and K tend to oversmooth the resulting
image [18]. For computing the distance, this research work
uses the Euclidean distance, i.e., the squared 2-norm. With
this method, the distance from a given pixel with coordinates
(r, ¢) to any other pixel for A = 1 is defined as in (1).

d (I (re) , I (i) = e — Ij)* + (r — > +(r —j)* (1)

where I, is the normalized pixel value of the image / (the
one-band representation of the image) at row r and column c,
and [;; the value of every other pixel at row i and column j.
Once the K nearest neighbors have been found, the filtered
result, O, is obtained using (2):
O(i)=M, JEw; @)
K
where P is the original probability map obtained from the
SVM classifier and w; contains the K nearest neighbors of
pixel i. As a result, there are as many O output probability
maps as classes in the SVM classifier. With these optimized
probability maps, a final classification map is obtained by
assigning the label of the class with the highest probability

VOLUME 7, 2019

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

IEEE Access

to each pixel in the image. In [34], KNN filtering algorithm
is described in more detail.

Ill. PARALLEL IMPLEMENTATIONS

After describing the database, the SS classification approach
and the evaluated platforms, this section presents the imple-
mentation details of each algorithm onto each platform. It is
organized following the same order of the previous section:
first, the implementation details of the three desktop GPUs
will be presented and, after that, the same will be done for
the low power consumption GPU and the manycore. To ease
the understanding of this section, Fig. 3 provides a dataflow
diagram of the implementations in the GPU-based platforms
and the manycore-based platforms.

A. HIGH-POWER GPU PLATFORMS

The SS classification algorithm has been implemented
exploiting three NVIDIA GPUs. These devices have a high
number of cores (more than one thousand) and a memory of
the order of gigabytes. The limitation of this architecture is
the power consumption, which makes this device suitable for
applications where this constraint is not relevant, as in the
neurosurgical use case. As stated before, Fig. 3.a provides a
diagram of the implementation for the three GPUs.

1) SVM ACCELERATION

As previously stated, the SVM classifier independently
assigns a class to each pixel. This aspect eases the develop-
ment of the parallel version of this algorithm which performs
a pixel-wise classification. The SVM algorithm consists of
three steps: distance estimation, and binary and multiclass
probabilities computation, all of them performed on the
device.

Before starting the computation on the GPU, the input
image and all the variables obtained by the SVM training
(which is offline and is not presented in this work) are trans-
ferred from the host to the device global memory. After that,
the classification starts computing the distances between the
samples (pixels) and the hyperplanes, already introduced.
This first step is performed exploiting the optimized cublasS-
gemm routine, which belongs to the cuBLAS library [35].
This function computes a matrix-matrix product: in this case,
the two inputs are the original image and the matrix con-
taining the hyperplanes data. The distances are stored in a
matrix whose size is number of pixels x number of hyper-
planes. These data are the inputs of the binary and multiclass
probabilities computations. They are both computed inside a
kernel, whose grid dimension is the ratio between the number
of pixels and the number of threads present in one block of
the grid. In this case, this number is set to 32 according to the
definition of warp provided by NVIDIA. If the remainder of
the integer ratio is not zero, the dimension is incremented by
one.

As previously explained, the probabilities computation can
be pixel-wise parallelized, so the kernel simultaneously com-
putes the binary and the multiclass probabilities for each

VOLUME 7, 2019

HIGH-POWER/ LOW-POWER GPUs

(NVIDIA Tesla K40 —- GTX 1060 — RTX 2080 — Jetson TX2)

Start

*Data transfer

Parameters Declaration and
Initialization
PCA
(Eigenvector Computation)

Principal Component
Analysis (PCA)

T P

Support Vector Machines

*KNN Output
Transfer K-Nearest Neighbors
(KNN)

'

Classification Result

(a)
LOW-POWER MANYCORE
(Kalray MPPA-256-N)

(CLUSTERS]

Parameters Declaration and
Initialization

Support Vector Machines
(SVMs)

DDR Memory

ighbors Searching
(KNN)

\ 4
K-Nearest Neighbors Filtering ‘

. (KN \
v

Classification Result ‘

Free Host Memory

End

KNN Output Transfer

(b)

FIGURE 3. Dataflow of the (a) GPU-based platform and
(b) manycore-based platform parallel implementations. (*) Data transfers
are not performed in the Jetson TX2 implementation.

pixel. First, the kernel faces a binary problem assigning to
each pixel the probability to belong to one of the two classes
under study. To perform this task, two steps are executed:
first, it computes the probability of the sample, associated to
one of the classes, through a sigmoid function to the relative
distance; secondly, it estimates the probability of the sample
to belong to the other class of the classifier. These first stages
are executed a number of times equal to the number of hyper-
planes. Then the kernel proceeds to compute the multiclass
probabilities. In particular, the new probability values are iter-
atively refined until the difference with the previous iteration
is under a threshold or if a maximum error is reached. When
one of these two cases is verified, the multiclass probabilities
of the sample are computed.

152321

IEEE Access

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

2) PCA ACCELERATION

The PCA implementation is divided in four stages: data nor-
malization, covariance matrix computation, Jacobi algorithm
execution and projection calculation.

a: NORMALIZATION

The input of this phase is the image that has been already
transferred and stored in the global memory, before perform-
ing the SVM algorithm. In this step, two main operations
are performed: the averages computation of each band and
their subtraction from each element of the corresponding
band. Both these steps are performed exploiting the CUDA
streams [36], that are sequences of operations executed on
the device, in the same order they have been issued by the
host. Within a stream, the operations are executed in the
prescribed order; on the other hand, different streams can
overlap their sequences of operations in order to save com-
putational time. In this case, a number of streams equal to the
number of bands is created. First, each stream manages the
average computation in each row (i.e., each band) of the input
matrix. This task exploits the highly optimized cublasDasum
function that belongs to the cuBLAS library [35]. After, all
the averages are computed and subtracted from each element
of the matrix row. In this case, each stream executes a custom
kernel, whose grid dimension is the same as that presented for
the SVM algorithm. This kernel removes the average from
each element of the corresponding band. Once this step is
finished, the streams are removed.

b: COVARIANCE

The product between the output of the previous step and
its transpose matrix, divided by the number of pixels, is the
covariance matrix. This step exploits another cuBLAS func-
tion, cublasDgemm, which allows to compute the product
between two matrices. It can be noticed that it is not necessary
to perform the transpose computation, since it is intrinsically
done within the cuBLAS function. The covariance matrix is
also stored in the GPU global memory.

c: JACOBI

As said before, Jacobi is the method chosen to compute the
eigenvectors. Authors developed two possible implementa-
tions of this step. The former employs a suitable routine of
the cuSOLVER library [37] (developed by NVIDIA), called
syevj. The use of this function requires the declaration and
initialization of some variables and arrays. These variables,
together with the covariance matrix, represent the inputs of
this function, which returns the sorted eigenvectors matrix.
The performance analysis of this part of the code shows that
the serial eigenvectors computation is faster than the parallel
one. For this reason, the authors decided to move this step on
the host, executing the serial procedure for the Jacobi method.
To perform this step on the host, the covariance matrix is
transferred to the CPU; at the end of the computation, only
the eigenvectors referred to the principal components P are
transferred to the GPU global memory. Despite the increased

152322

number of data transfers, the eigenvectors computation on the
host is the most efficient and, for this reason, it is the one
included in the final system.

d: PROJECTION

The projection of the input image into the subspace described
by the eigenvectors is performed as the product between the
image and the eigenvectors of the principal components. This
step is computed exploiting another routine of the cuBLAS
library. In this case, in fact since the number of the selected
principal components is one, this step consists in a product
between a matrix and an array performed by the cublas-
Dgemvfunction. If the number of principal components to
select is higher than one, the projection is the result of
a matrix-matrix product and it is performed by a cublas-
Dgemmroutine. PCA output is stored in the device global
memory.

3) KNN ACCELERATION

The basic idea followed in the development of the KNN
parallel version is that each CUDA core has to assign a label
to each pixel simultaneously. To do this, two main steps
have to be performed: the nearest neighbors searching and
the filtering phase. As far as the first stage is concerned,
the neighbors’ searching is done within a restricted area
surrounding each pixel, without considering the entire image.
Indeed, [18], [34] use a window characterized by 14 rows of
pixels, instead of the entire image, accelerating the compu-
tation without modifying the classification accuracy. For this
reason, the first stage performed by the KNN parallel version
is the definition of the pixels windows.

a: NEIGHBOR SCAN

A custom kernel computes the borders and the size of the
windows in parallel through the pixels. Notice that it is
important to know these parameters before starting the KNN
computation because they allow to evaluate the neighbors for
each pixel simultaneously. The nearest neighbors searching
is performed by a custom kernel, which is characterized by
a number of threads equal to the number of pixels. This
kernel exploits the PCA output, already stored in the global
memory, in the distances computation. For each thread of
the kernel, two arrays (whose dimension is equal to the
number of neighbors) are stored in the local memory: the
former contains the distances, each one initialized with a huge
value; the latter contains the neighbors’ indexes. Every thread
computes the Euclidean distances between the assigned pixel
and the ones within its window. After each computation, if the
distance is smaller or equal to the last element of the array,
it will be stored in this last position. Once a new distance
is stored, the algorithm sorts the elements of the array in an
ascending order, keeping track of their indexes. The indexes
of the selected neighbors are the output of the kernel and they
will be copied to the global memory. In particular, a matrix
containing all the neighbors of each pixel is allocated in the
global memory and each thread can store its neighbors at the

VOLUME 7, 2019

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

IEEE Access

end of the kernel. Once all the neighbors are stored, a new
kernel can perform the filtering phase considering the SVM
output, already in the global memory.

b: FILTERING

First, each thread in the kernel copies the SVM probabilities
of their corresponding neighbors from the global to the local
memory. For each class, each thread computes the sum of the
SVM probabilities of all the neighbors of the reference pixel.
The label corresponding to the class with the highest sum of
probabilities is assigned to the pixel and stored in an array in
the global memory. The final output is an array containing all
the pixel labels.

B. LOW-POWER GPU PLATFORMS

This section includes the implementation details for the three
algorithms using the embedded platform NVIDIA Jetson
TX2. Although this system also uses a GPU to parallelize the
heaviest computational processes, the computational power
and the amount of memory is not as high as in the NVIDA
desktop GPUs, being necessary in some occasions the special
tailoring of some functions. In addition, this system ben-
efits from sharing the same memory for host and device,
avoiding memory transfers between the embedded CPU and
GPU. This fact introduces the possibility of using the CPU
for non-parallelizable algorithms without drawbacks and the
possibility of running different processes in CPU and GPU
concurrently. This aspect is also represented in Fig. 3.a, as the
main difference among the GPU-based implementations is
that Jetson TX2 does not perform data transfers.

1) SVM ACCELERATION

The SVM implementation is split up into two kernels, where
the first one computes the binary probabilities —i.e., first step
described in Section II.C— and the second one performs the
decoupling of the class probabilities —steps 2 and 3 described
in Section II.C.

a: BINARY PROBABILITIES

The first kernel calculates the binary probabilities by first
computing the distances of the hyperspectral images to all the
separating hyperplanes and then transforming them to pair-
wise probabilities using an adapted sigmoid function [31].
This is implemented as a naive matrix multiplication between
the weight matrix and the hyperspectral image. The problem
space is mapped in blocks of 64 threads, where each thread
computes all the values for all the classifiers. Based on [38],
we increased the workload by leveraging the number of pixels
each thread processes, reducing the shared memory occu-
pancy. We have obtained the best results when each thread
processes eight pixels and the occupancy is set to 25%. The
SVM model (except the weights matrix) is stored in constant
memory, a type of read-only memory space optimized for
uniform access across threads in a warp. The weights matrix
and the hyperspectral image are stored in the global memory
space but cached in the L1 and L2 caches.

VOLUME 7, 2019

b: DECOUPLE

In this step, class probabilities are estimated by combining the
pairwise coupled probabilities [31] computed on the previous
kernel. Just as in the previous step, a block of 64 threads is
used, each one computing the class probabilities for one pixel.
All auxiliary variables are stored on registers.

2) PCA ACCELERATION

Since PCA comprises four well-differentiated stages, the
implementation is also divided into four main functions: data
normalization, covariance matrix computation, Jacobi algo-
rithm execution and projection calculation.

a: NORMALIZATION

This functionality is implemented using two different kernels:
one calculating the average per band and another subtracting
each pixel from the average. The first kernel makes use of the
GPU shared memory to perform an average over the different
bands using a number of blocks equal to the number of bands
and 1024 threads per block. The idea is that every thread
within a block performs an addition to the next chunk of band,
i.e., the following 1024 values, until the band’s end is reached.
At this point, each thread stores a portion of the required sum,
hence it is needed to combine its values to obtain the average
of the complete band. For that purpose, the shared memory is
used to perform the so-called average reduction [39]. As the
values in shared memory can be accessed by all the threads
within a block, it is possible to use only the lower half of
threads to sum its values with the higher ones. Repeating this
process (log,1024 =)10 times, the first thread ends up with
the sum band value. The second kernel uses a different thread
for each different SS pixel in the hyperspectral image in order
to subtract the corresponding band sum divided by the spatial
size of the image.

b: COVARIANCE

The process of creating the covariance matrix consists in the
multiplication of each centered band with itself and all the
others in order to obtain a symmetric matrix. For this reason,
although the process can be summarized as the multiplication
of a matrix by its transposed, performing the transposed step
is not needed. To benefit from these implications, we used the
syrk BLAS routine, which performs a rank-n update of an n-
by-n symmetric matrix and it is implemented in the cuBLAS
library.

c: JACOBI

Since this process is iterative and strongly dependent on the
previous iterations data, several experiments revealed that the
GPU paradigm is not able to accelerate the algorithm with
such a reduced number of bands [40]. Therefore, and taking
into account that no memory copies are needed between CPU
and GPU, this process has been developed in the CPU.

d: PROJECTION
In this stage, the centered HS image represented as a matrix
is multiplied by the principal eigenvector, resulting in a

152323

IEEE Access

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

matrix-vector multiplication. This operation is performed
mapping one thread per spatial pixel and iterating across the
bands within them. By this way, each thread stores the result
of multiplying and accumulating all the spectral bands of a
spatial pixel with the main eigenvector.

3) KNN ACCELERATION

The implementation of the KNN filtering algorithm is divided
in two stages: neighboring scanning process and mean com-
putation.

a: NEIGHBOR SCAN

The first step calculates the distances from one pixel to the
rest in the rectangular window. Each thread computes all
the distances for one origin pixel as stated on Equation (1).
As consecutive threads read consecutive pixels and move
forward one pixel on each iteration, pixels are cached in
L1 cache. The second kernel searches for the K nearest
neighbors in the distances space by using a partial heapsort
with online setting. The approach per pixel is as follows:
initially, the first K distances are read and turned into a
max-heap using the heapify procedure. Then, the remaining
distances are read sequentially and compared against the top
parent leaf of the heap. If the read distance is lower than the
leaf, the leaf is replaced and the heapify procedure is called
again to reorder the heap. The upper-bound complexity of the
algorithm is O (n log, K) where n is the number of distances
per pixel and K is the number of neighbors. Local memory
space is chosen for storing the heap because, although located
in global memory, it is heavily cached in L1 and L2 caches.
Since the number of distances per pixel is high, the amount
of memory needed to store them all might exceed the system
memory. Consequently, a batch approach is chosen for the
first two kernels with a batch size of 10 rows. A buffer is used
to store temporarily the distances and pass them to the second
kernel. This buffer is fully filled on each batch iteration by
the distance kernel except when the rectangular window is on
the top or the bottom of the image; in this case, the buffer
overlaps with the start and the end phase and is filled with the
maximum value representable by a float type for the correct
execution of the neighbors scan stage. In our case, the number
of rows of the buffer is bigger than the span of the rectangular
window so the buffer clearing only takes place at the first and
the last batches.

b: MEAN COMPUTATION

For the third kernel, each thread is assigned to a pixel that
computes the mean of the class probabilities of the SVM for
its neighbors and selects the class with the highest probability.

C. LOW-POWER MANYCORE PLATFORM

In this section, the different approaches regarding the
implementation of each algorithm on the MPPA-256-N are
detailed. Generally speaking, the main constraint existing
within this platform is the reduced amount of memory avail-
able in each cluster. Although the total amount of memory

152324

is 2 MB, there is only 1 MB left for data storage, since the
rest is reserved for the operation system and the application
itself. Consequently, all the implementations have been aimed
at optimizing the use of this memory and reducing the total
amount of transmissions from the I/O subsystem to the clus-
ters, since the host is only used for transferring the image to
the I/O subsystem.

Additionally, it should be highlighted that, compared to
previous implementations on the platform [31], [32], this
paper introduces the usage of a new communication library
based on unilateral and asynchronous data transmission. This
new library allows the developer to simplify the communi-
cation procedure while maintaining the performance [41].
As a summary, a dataflow diagram of the implementation is
provided in Fig. 3.b.

1) SVM ACCELERATION

Concerning SVM acceleration using the MPPA-256-N, the
structure of the algorithm in terms of data parallelism is
considered pixel-wise. That is, each pixel of the image can
be processed in parallel. Hence, the implementation of this
algorithm has been planned to optimize both data transmis-
sions and clusters memory usage.

To do so, and thanks to the usage of the asynchronous
communication library, each processing element inside each
cluster reads data from the I/O subsystem memory, processes
its corresponding block of 64 pixels and writes the result
on the I/O subsystem memory again. With this structure,
both communication and processing can be parallelized and,
additionally, a 16-buffer technique is automatically employed
to communicate data as the asynchronous library receives the
reading request and performs the communication as soon as
the DMAs finish the previous transmission.

2) PCA ACCELERATION

The PCA algorithm, instead, depends on the step of the
algorithm that should be accelerated. To this regard, different
strategies have been considered depending on the parallelism
within each step of the algorithm.

a: NORMALIZATION

In the case of the normalization step, a fixed size of 64 KB
is considered as the standard block size when transmitting
data from the I/O to the compute clusters. Specifically, 16 K
pixels of the same band are grouped in each block, so, when
16 processing elements are working in parallel, 1 MB of data
is used to compute the average of one band and to remove
it from each pixel of the band. Likewise, each cluster is in
charge of performing the normalization of one band and, to do
s0, each processing element is reading one block of pixels
from the I/O subsystem memory and accumulating the result.
After all the blocks composing one band are processed, the
average of the band is computed (i.e., a reduction strategy
is considered in this stage). Once the average of the band
is obtained, the processing elements read the pixel blocks,
the average is subtracted from them and the result is written

VOLUME 7, 2019

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

IEEE Access

on the I/O subsystem in both the same order of the reading
and performing a transposed of the image that will be used
during the Projection step. To perform this transposition, the
asynchronous communication library allows the developer to
perform spaced readings/writings so the transposition of a
matrix is carried out together with the communication, saving
processing time.

b: COVARIANCE

Secondly, during the covariance computation step, the imple-
mentation takes advantage of the nature of the result of
multiplying a matrix by its transposed, which is a symmetric
matrix. In this situation, the total amount of vector multiplica-
tions required is almost halved. In this part of the algorithm,
each cluster is in charge of computing the vector multiplica-
tions associated to each row of the result and iterates until
fulfilling the covariance matrix. First, each row/column/band
of the image is divided in blocks of the same size as in the
previous stage (64 KB). After that, the block associated to
the row is read from the I/O subsystem by one of the pro-
cessing elements of each cluster. Likewise, each processing
element iterated reading column blocks until all of them
are processed. Then, the following row is read and all the
processing elements repeat the same procedure until all the
row corresponding to the result is obtained. Finally, the result
is written in both a row- and a column-wise order on the
resulting covariance matrix, using both the normal and the
spaced writings modes of the asynchronous communication
library.

c: JACOBI

Thirdly, due to the strong data dependency existing within the
Jacobi algorithm, it has been decided to compute it indepen-
dently in each cluster. As this algorithm aims at diagonalizing
the covariance matrix, it only required 128 x 128 values
when analyzing brain cancer images and 100 x 100 when
using dermatology images, totaling for 64 KB and 39 KB
of data, respectively. Inside each cluster, the processing ele-
ment 0 is in charge of selecting the elements to be zeroed,
and afterwards all the processing elements within the cluster
compute the result after zeroing each element. This process is
repeated iteratively until the diagonalization is finished. After
that, only the first eigenvector (the one associated to the first
principal component) is kept in memory.

d: PROJECTION

Finally, the strategy considered for the Projection is equiva-
lent to the one for the SVM algorithm. The image is divided in
blocks of 64 pixels (64 x 128 float values), totaling for 32 KB.
Hence, when using the 16 processing elements inside each
compute cluster, a total amount of 512 MB of memory will
be used. The main difference of this algorithm with the SVM
is the input data, as this algorithm uses the transposed of the
normalized matrix as input data, while the SVM algorithm
uses the transposed of the original image. That is why both
algorithms need to be processed in different time slots and
their communication parts are not shared.

VOLUME 7, 2019

3) KNN ACCELERATION

The strategy followed to accelerate the KNN algorithm is
almost equivalent to the one used for SVM. In this case,
the pixels can also be processed in parallel, but the amount
of data required to process one pixel is not proportional to
the one required to process N pixels. That is, as a band
window has been set to perform the searching of the K nearest
neighbors, to process one pixel 14 lines of the image are
required, while, for example, only 14 lines and 1 pixel are
required when processing 2 pixels.

To be compliant with the memory constraints of the plat-
form, a conservative approach of using blocks of 64 pixels
have been chosen to implement the KNN searching. With this
pattern, the memory usage in the worst case (dermatology
images) is the following: 1) each pixel of the image is rep-
resented as a set of 12 bytes (PCA output value, row, column
and index). Consequently, the input data is 1000 (samples)
x 14 (lines composing the searching band) 4 64 pixels x
12 bytes, totaling for 164.81 KB; 2) For each pixel, a total
amount of 40 neighbors are computed, so 10 KB are reserved
for output data in this algorithm.

With this implementation, images with a resolution equiv-
alent to 4 K could be analyzed using this algorithm, as they
would use only 672 KB of input data. Specifically, each clus-
ter loads the data necessary to analyze each block of 64 pixels
and each processing element looks for the neighbors asso-
ciated to a subset of each block of pixels, e.g., when using
16 processing elements per cluster, each processing element
processes 4 pixels of each block.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

After describing the implementation details of each algorithm
for each platform, this section presents a thorough analysis
of the obtained results, focusing on two different aspects:
performance —i.e., processing time— and power consumption.
However, before presenting the results gathered for each plat-
form and implementation, first some common ground must
be set to simplify the understanding of the remaining section.
Regarding performance, it is going to be assessed by mea-
suring the execution time per algorithm. Regarding power
consumption, this metric is going to be obtained considering
the application as a whole. Finally, it must be highlighted that
all the measurements presented in this section are the result of
an average of 20 repetitions, with a standard deviation smaller
than 1% for the execution times.

To simplify the comparison among all the implementa-
tions, three different Figures of Merit (FoMs) have been
defined. These FoMs link both the global time and the power
consumption of the SS classification. FoM 1 is a general
index, expressed as (3), inversely proportional to the product
between time (7T') and power (P). FoM 2 and FoM 3 are similar
to the first index, but the former gives more importance to the
time while the latter favors the power consumption. They are
expressed as (4) and (5), respectively.

1
T xP

FoM1 = 3)

152325

I E E E ACCGSS R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

1

FoM2 = ——— 4

? T2+ P @
1

FoM3 = — 5

° T % P2)

The choice of these three FoMs is due to the fact that
authors want to provide a general evaluation of different
technologies, together with the possibility to favor some
specific aspects related to an application. For these reasons,
FoM1 gives equal importance to the processing time and
power consumption, presenting a general metric that does
not consider specific application constraints. On the contrary,
FoM?2 gives more importance to the processing time, so it is
suitable for evaluating applications where time constraints
are critical, as is the case of the neurosurgical use case. During
a neurosurgery, it is crucial to not increase the duration of
the procedure and, for this reason, a real-time classification is
mandatory. However, the operating room has not power sup-
ply restrictions and, as FoM 3 favors the power consumption,
it can be used to evaluate those applications where this aspect
represents a constraint. Considering the dermatological use
case, the classification is not performed during a surgery, but
it is evaluated by a portable device, powered by a battery.
Therefore, the prevalent aspect is the power consumption.

The section is organized as follows: first, the individual
results of each implementation and platform are presented in
Sections IV.A, B and C. After that, Section IV.D compares
all of them and extracts the conclusions.

A. HIGH-POWER GPU PLATFORMS

This section presents the classification results of the HS
image classification, obtained by exploiting three desktop
NVIDIA GPUs to accelerate the heaviest parts of the SS clas-
sification algorithm. As already discussed in Section IILA,
the final version of this system performs the PCA, SVM and
KNN algorithms on the device. Only one part of the compu-
tation is executed on the host: in fact, the Jacobi method is
faster if computed on the CPU, despite the increased number
of data transfers.

Table 3 summarizes the performances obtained exploiting
the three desktop NVIDIA GPUs used in this work, while
Fig. 4.a shows the computational times related to the sin-
gle algorithms (in logarithmic scale). It must be highlighted
that those times refer only to the effective execution of the
algorithms, without considering the cuBLAS context and the
streams creation, the inputs transfers, the device memory allo-
cation and deallocation. Analyzing these times, it is possible
to conclude that the KNN algorithm is the heaviest part from
the computational point of view, while the SVM is the fastest
one. Moreover, the PCA times are calculated considering also
the time of the eigenvectors computation performed on the
host (including the data transfers). This time represents a very
low percentage of the entire PCA computation: for exam-
ple, considering one of the biggest images of the database
(PD1C1) and the NVIDIA RTX 2080 GPU, the time related
to this phase is 1 ms compared to the 23 ms of the entire
PCA execution. The column Time, in Table 3, shows the

152326

TABLE 3. High-power GPU platforms (Tesla K40, GTX 1060, RTX 2080)
implementation results.

Image Device Time | Av. Power | FoM1 | FoM2 FoM3
ID [s] [W] [mJ] | [mJ/s] | [md/W]

Tesla K40 | 1.77 36.58 15.36 8.63 0.420

PBICI | GTX 1060 | 1.99 38.79 1292 | 647 0.333
RTX 2080 | 1.23 66.09 12.21 9.85 0.185
Tesla K40 | 1.49 34.04 19.71 | 13.23 0.579
PB2C1 | GTX 1060 | 1.75 38.81 14.68 8.36 0.378
RTX 2080 | 1.13 65.89 13.42 | 11.86 0.204
Tesla K40 | 1.10 35.68 2545 | 23.11 0.713
PB3C1 | GTX 1060 | 1.36 29.30 2494 | 18.23 0.852

RTX 2080 | 1.07 58.42 15.95 | 14.86 0.273
Tesla K40 | 8.67 28.95 3.98 0.45 0.138
PDIC1 | GTX 1060 | 2.90 17.80 19.34 | 6.65 1.087
RTX 2080 | 2.49 88.45 4.54 1.82 0.051
Tesla K40 | 8.66 28.98 3.98 0.45 0.137
PDIC2 | GTX 1060 | 2.87 29.44 11.83 | 4.12 0.402
RTX 2080 | 2.46 88.51 4.57 1.85 0.052
Tesla K40 | 8.68 36.45 3.16 0.36 0.087
PDIC3 | GTX 1060 | 2.87 14.27 24.38 8.48 1.709
RTX 2080 | 2.49 88.20 4.54 1.81 0.051

computational times of the SS classification system, includ-
ing the algorithm times (already presented) and the ones
related to the cuBLAS context and the streams creation,
the inputs transfers, the device memory allocation and deal-
location. Analyzing these classification results, it is possible
to make a comparison between the three boards. It is worth
noting that all the boards provide a real-time classification for
all the images. The device with the highest performance is the
NVIDIA RTX 2080, which takes less than 2.5 s to evaluate
the dermatological images, i.e., the biggest ones. Indeed,
this board is characterized by the highest ratio between the
number of cores and the working frequency, and it is based
on the Turing architecture, which is the most recent among
the three considered devices. If the neurological images clas-
sification is taken into account, the Tesla K40 shows better
performance than the GTX 1060 but, concerning the derma-
tological images, which have the highest number of pixels,
this result is reversed. This aspect may be due to the large
number of accesses to the device global memory during the
KNN computation: in fact, in the neighbors searching and in
the filtering phases the PCA and SVM results, stored in the
global memory, have to be read several times, increasing the
classification time. The GTX 1060 is based on a more recent
architecture and it is characterized by a higher working fre-
quency compared to the Tesla K40, therefore it can perform
the memory loading in a more efficient way, reducing also the
computational time.

Table 3 shows the average power consumed by the three
devices. It has been measured through the NVIDIA Sys-
tem Management Interface (nvidia-smi) tool, which allows
sampling the power during the execution on the device.
The time step chosen for the sampling is 1 ms. It must be
highlighted that this tool provides a measure of the power
consumed by the device. As said before, the SVM and the
KNN are entirely executed on the GPU but, in the PCA, the
eigenvectors computation is performed on the host. For this

VOLUME 7, 2019

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

IEEE Access

ESVM EPCA BKNN
10,000
n
E 1000
5
E
iy
= 100
g
5
o
91
b
55}
" Testa K40[GTX 1060[RTX 2080 Tesla K40] GTX 1060 [RTX 2080 | Tesla K40] GTX 1060] RTX 2080 | Tesla K40] GTX 1060] RTX 2080 | Tesla K40] GTX 1060] RTX 2080| Tesla K40 GTX 1060] RTX 2080
PB1CI PB2Cl1 PB3Cl1 PDIC1 PDIC2 PDIC3
BSVM 8 4 1 7 3 1 4 2 1 24 13 4 24 13 4 24 12 4
BEPCA 27 21 23 24 22 23 19 18 20 62 39 23 66 39 24 65 38 24
BKNN| 1,451 1,222 336 1,243 1,052 304 785 635 201 8,251 2,103 1472 8,251 2,091 1,479 8,248 2,086 1,465
@
ESVM BPCA BKNN
100,000
m
£ 10,000
1}
E 1,000 1
=
g 10
g
2 10 A
=
14
MaxQ MaxP | MaxCLK | MaxQ MaxP | MaxCLK | MaxQ MaxP | MaxCLK | MaxQ MaxP | MaxCLK| MaxQ MaxP | MaxCLK | MaxQ MaxP | MaxCLK
PB1Cl1 PB2C1 PB3Cl1 PDIC1 PD1C2 PDIC3
ESVM 88 65 21 59 38 16 63 39 12 93 74 22 101 75 23 94 83 24
BPCA 346 220 122 236 160 118 329 219 175 349 296 212 345 297 212 338 309 209
BKNN| 2,005 1,655 1,390 2,472 2,035 1,755 852 686 576 15,765 13,072 11,695 15,745 13,021 11,701 16,162 13,127 11,773
ESVM BPCA BKNN
10,000,000
21,000,000
g
g 100,000
& 10000 7
=
8 1,000 o
=
2 100
£
sl 10
14
BSVM | 26,677 | 1,679 | 1,672 | 113 [20,909]| 1,319 | 1,314 92 [14906 | 947 947 66 | 55413 | 3478 | 3,467 | 223 |55822| 3507 | 3489 | 224 |56,048(3,520 | 3,506 | 227
BPCA | 35612 5205 | 3322 | 1,683 |30,168| 4,461 | 2,947 | 1,506 | 20,389 [3,109 | 2,132 | 1,098 |99,679|14,646| 8,609 | 4350 | 99,689 | 14,650| 8,619 | 4,356 | 99,684 | 14,670 | 8,616 | 4,372
BKNN |129,840| 8,707 | 8459 | 864 (108975 7,332 | 7,131 | 737 |53,038| 3,624 | 3,520 | 413 [1,092,6|71,911| 69,877 | 6,033 |1,092,6| 71,912| 69,883 | 6,034 |1,092,7| 71,913 | 69,878 | 6,033
©

FIGURE 4. Execution time of each algorithm per platform implementation for each HS image of the database (representation in logarithmic scale).
(a) High-power GPU platforms results. (b) Low-power GPU platform results. (c) Low-power manycore platform results.

reason, the Av. Power does not take into account this step.
In this context, it must be noticed that the eigenvectors com-
putation represents the 0.04% of the entire classification time
(in the case of the image PD1C1 and the RTX 2080 GPU),
and therefore it is negligible. Moreover, authors tried to mea-
sure the power consumption of the SS classification consider-
ing the PCA entirely performed on the device (so, computing
the eigenvectors with the cuSOLVER function). The values
obtained are comparable with the ones presented in Table 3.
This further result demonstrates that the power consumption
related to this specific step is negligible if compared to the
entire execution.

Considering the three devices in Table 3, the GTX 1060 is
mainly the least power-demanding device. It is based on
the Pascal architecture that is optimized for the power
consumption. Concerning the dermatological images, it is
possible to notice that both GTX 1060 GPU and Tesla

VOLUME 7, 2019

K40 GPU are more efficient than RTX 2080 GPU, mainly due
to the higher number of cores that works at a higher frequency.

Finally, analyzing the FoMs in Table 3, it is possible to
notice that the Tesla K40 GPU is the one with the best
performance for neurological images, while GTX 1060 GPU
provides the best performance for dermatological images due
to the low values of power consumption. FoM1 confirms
this consideration. Indeed, for the dermatological images,
the GTX 1060 GPU achieves lower processing times than
the Tesla K40, as explained before. Moreover, its power
consumption values ensure a higher FoM 1 than the Tesla
K40 one.

It is important to highlight that there is a large difference
between FoM 2 and FoM 3 values. This was expected due to
the characteristics that these desktop GPUs presents. In fact,
as said before, they are more suitable for those applications
where the power supply is not strictly limited and where

152327

IEEE Access

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

TABLE 4. Low-power GPU platform (Jetson TX2) implementation results.

Image Device Time | Av. Power | FoM1 | FoM2 FoM3
ID [s] [W] [mJ'] | [mJ/s] | [mJ'/W]
MaxQ 3.28 2.33 130.22| 39.65 55.69
PBIC1 MaxP 2.50 4.46 89.36 | 35.65 20.01
MaxCLK | 2.20 4.95 91.80 | 41.72 18.54
MaxQ 3.56 2.69 104.10| 29.19 38.64
PB2C1 MaxP 2.78 432 82.93 | 29.73 19.18
MaxCLK | 2.51 5.38 73.90 | 29.38 13.73
MaxQ 1.99 1.94 258.37| 129.68 | 132.99
PB3Cl MaxP 1.44 3.01 230.45| 159.90 76.53
MaxCLK | 1.32 4.14 181.67| 136.91 43.79
MaxQ 18.15 3.36 16.39 | 0.90 4.87
PDICI MaxP 14.61 4.86 14.05 | 0.96 2.88

MaxCLK | 13.17 6.37 11.91 0.90 1.87

MaxQ 18.10 3.40 1623 | 0.89 4.77

PD1C2 MaxP 14.55 4.84 14.19 | 0.97 2.93
MaxCLK | 13.18 6.34 11.95] 0.90 1.88

MaxQ 18.44 3.53 1533] 0.83 433

PD1C3 MaxP 14.68 4.81 14.15 | 0.96 2.94
MaxCLK | 13.24 6.34 11.90 | 0.89 1.87

fast elaborations are needed. Therefore, considering these
devices, FoM?2 better describes the performances of this
application. Considering this index, Tesla K40 GPU shows
the highest values in the neurological images classification,
while the GTX 1060 GPU better performs considering the
dermatological images.

B. LOW-POWER GPU PLATFORMS

The implementation described in Section III-B has been used
to conduct several experiments using the HS images selected
in this paper. As in the previous subsection, the evaluation
is summarized in Table 4 including the three aforementioned
figures of merit, while Fig. 4.b presents the processing time
needed stage by stage (in logarithmic scale). Power mea-
surements correspond to the GPU and DRAM consumptions
except for the Jacobi method, which replaces GPU with CPU
consumption. In addition, three different clock configurations
are assessed: (i) Max(Q prioritizes energy efficiency by con-
straining the GPU clock up to 800 MHz and the memory
clock up to 1.30 GHz; (ii) MaxP leverages between perfor-
mance and energy efficiency by constraining the GPU clock
up to 1.12 GHz and the memory clock up to 1.60 GHz;
finally, (iii)) MaxCLKfixes the GPU clock to 1.30 GHz and
the memory clock to 1.87 GHz, improving performance at
the expense of decreasing power efficiency.

Results show that, as expected, MaxCLK obtains the best
performance in terms of computing times followed by MaxP
and then by MaxQ, achieving the opposite in terms of average
power. Nevertheless, focusing on FoM 1, it can be observed
that MaxQ obtains better results for all the image set, which
means that the balance between time and power is opti-
mum when using this mode. Regarding FoM?2, results vary
depending on the assessed image, with similar ratios for
the different modes. To end up, FoM 3 behaves as expected,
achieving the best results MaxQ mode in every case. Taking
into account the results, MaxQ mode is considered the best

152328

TABLE 5. Low-power manycore platform (MPPA-256-N) implementation
results.

Image CC-PE Time | Av.Power | FoM1 | FoM2 FoM3
D Is] Wl | (md?] | (mIs] | (mItwi
1| 192.68 847 | 061 | 0003 | 0072
ppicy |16 | 1614 827 | 749 | 0464 | 0906
6.1 | 14.02 1116 | 639 | 045 | 0573
1616 | 323 1082 | 28.61 | 8.859 | 2.644
1| 160.52 834 | 074 | 0.005 | 0.090
116 | 13.58 827 | 890 | 0656 | 1.077
PB2C 6T T 1187 1120 | 752 | 0634 | 0672
1616 | 2.82 1062 | 3339 | 11.841 | 3.144
-1 | 8865 837 134 | 0015 | 0.161
116 | 7.99 818 | 1530 | 1915 | 1870
PB3CL 67T 693 1085 | 1330 | 1919 | 1226
16-16 | 191 900 | 52.88 | 27.688 | 5342
11 | 124992| 828 | 009 | 0000 | 0012
1-16 | 92.16 848 128 | 0014 | 0.151
PDICT e T 54,08 1161 | 1.02 | 0012 | 0088
1616 | 12.73 1240 | 633 | 0498 | 0511
111 | 125033| 818 | 0.09 | 0.000 | 0012
116 | 92.19 8.49 127 | 0014 | 0.150
PDIC2 e T 8412 1153 | 1.03 | 0012 | 0.089
16-16 | 12.74 1261 | 622 | 0489 | 0494
111 | 125059| 804 | 009 | 0000 | 0012
1-16 | 9223 8.49 127 | 0014 | 0.150
PDIC3 M6 T 5412 1145 | 1.03 | 0012 | 0091
16-16 | 12.76 1261 | 621 | 0487 | 0493

option to seize the platform. On the other hand, if execution
time is key concern, MaxCLK is the preferred mode.

C. LOW-POWER MANYCORE PLATFORM

Finally, the results associated to the implementation using
the many-core architecture are analyzed. As can be seen
in Table 5, four different configurations have been addressed
to completely analyze the application behavior on the MPPA-
256-N. Specifically, a serial (1-1), a multi-core parallelism (1-
16), a multi-cluster parallelism (16-1) and a fully many-core
parallelism (16-16) configurations are studied and displayed
on the column CC-PE.

When comparing the workload distributions of each algo-
rithm with each configuration —Fig. 4.c (in logarithmic
scale)—, the obtained speedups vary considerably. In aver-
age, the speedup of the SVM algorithm reaches 231x when
compared to the sequential version, while KNN and PCA
speedups reach 160x and 21x, respectively. The huge level of
data dependencies in PCA makes it communication-bounded,
while, in the case of SVM, there is no data dependencies,
so the speedup is almost the ideal one when using 256 cores
in parallel.

It should be noted that, to obtain the global figures (Zime
and Av. Power), not only the time of the three algo-
rithms is considered, but also the data management between
stages and both initializing and shutting down the platform.
Consequently, the power consumption of the sequential
stages needs to be considered. That is the rationale behind
the fact that, in the case of using small images, power metrics
for the experiments using 16 PEs per cluster have an average
power consumption lower than their 1 PE counterparts.

VOLUME 7, 2019

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

IEEE Access

10,000

1,000 E
W Tesla K40

O GTX 1060
B RTX 2080
BMPPA-256-N

Execution Time (ms)

@ Jetson TX2

M Tesla K40

B GTX 1060

E RTX 2080

B MPPA-256-N
@ Jetson TX2

Execution Time (ms)

GLOBAL

(b)

FIGURE 5. Average execution time comparison between the different
platforms and configurations in the (a) neurosurgical use case and
(b) dermatological use case. Representation in logarithmic scale.

Finally, regarding the FoMs, please note that the configura-
tion in which all the MPPA-256-N resources are employed is
always the best one regardless of the image that is employed.

D. OVERALL RESULTS AND COMPARISON

Once the individual results have been presented, this section
deals with the comparison among them. As mentioned before,
this comparison is twofold: first, all the implementations are
going to be compared in terms of performance; afterwards,
they will be compared in terms of power consumption.

1) PERFORMANCE COMPARISON

Fig. 5.a and b present the performance comparison for the
neurosurgical and the dermatological use cases, respectively.
For each case, three different images have been tested.
To simplify the figures, their execution times have been
averaged. Both figures have been divided in four slots: the
first three provide the comparison of the execution times per
algorithm; likely, the last one provides the comparison of the
global times. Two important aspects should be highlighted:

o For the cases in which several versions have been
described -i.e., MPPA-256-N and Jetson TX2—,
the fastest versions have been selected for this compari-
son: “16-16"" for the MPPA-256-N and “MaxCLK”’ for
the Jetson TX2.

o To compare the results, a logarithmic scale has been
used. Fig. 5 presents the execution times in milliseconds.

Generally speaking, it can be observed that, as expected,
RTX 2080 is the platform providing the fastest results,
since it is also the one with more resources. Likely, the
MPPA-256-N provides the slowest results, which is also
consistent, since the difference in the volume of resources
among this platform and the rest under study is considerable.
However, there are some interesting results that are worth
commenting.

VOLUME 7, 2019

B Neurosurgical Use Case B Dermatological Use Case

88.4

100
90 F
80 F

70 F 63.5

= 60 F

T 50 F

2 40 | 354 315 35.6

Tk 205
10 F |:| 48 64
0 . D ==

Tesla K40 GTX 1060 RTX2080 ~ MPPA-256N Jetson TX2

FIGURE 6. Average power consumption comparison between the
different platforms and configurations in both use cases.

Regarding MPPA-256-N, even though in the global exe-
cution time it is the one with the slowest results, it is worth
highlighting the extremes. On the one hand, for PCA algo-
rithm, it can be observed that the results obtained are much
worse than the rest. On the other hand, for KNN algorithm,
it can be seen that, surprisingly, the results obtained with
MPPA-256-N are beaten only by those obtained with RTX
2080. These results are the best example to characterize this
platform: in the case of PCA, due to the memory limit of 2
MB per cluster, more than half of the executing time is spent
on communicating data and synchronizing the clusters, while
the cores are idle for long periods of time. This does not
happen with the rest of the platforms: since they present
bigger memories, their time spent on communications is
considerably less, which has a direct impact on the execution
time. However, in the case of KNN, the cores perform a huge
number of operations requiring only one communication,
which increases exponentially the platform performance.
As aresult, it can be concluded that MPPA can be really useful
for algorithms requiring a considerable amount of computing
operations, while maintaining the memory usage within a
reasonable limit.

Finally, in general lines, another aspect that draws attention
is the difference in the execution times between the desktop
GPUs and the other platforms. This difference is remarkable
for SVM and PCA, which is approximately one order of mag-
nitude, while for KNN this difference does not exist anymore.
This happens because PCA and SVM generically perform
simple linear algebra operations which highly depend on the
platform resources, while KNN involves more complex oper-
ations —e.g., sorting—. As a result, KNN features a really low
instruction level parallelism, causing the threads to remain
in an idle stay frequently and, hence, heavily degrading the
GPU pipeline efficiency. It should be noted that this does not
happen with the MPPA-256-N, since there is no pipeline in
this platform.

2) POWER CONSUMPTION COMPARISON

After comparing all the implementations and platforms in
terms of performance, now they are compared in terms of
power consumption. As with the previous comparison, for
this one also the fastest versions of both MPPA-256-N and
Jetson have been selected —i.e., “16-16"" and “MaxCLK”—.
Also as happened before, the results for each set of images

152329

IEEE Access

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

= TeslaK40 =4-GTX1060 o @ RTX 2080 =e=MPPA-256-N Jetson TX2

FoM1

1

100.00

FoM3 /«((((
(a)

=& TeslaK40 =a-GTX 1060 o @ RTX 2080 —e—MPPA-256-N Jetson TX2

FoM1

20.
0.00 Ik\
10.00 /AN

(b)

FIGURE 7. Average FoMs comparison between platforms and
configurations (representation in logarithmic scale) for the two use cases.
(a) Neurosurgical use case results. (b) Dermatological use case results
with the logarithmic scale limited to 20 for legibility purposes (the higher
the FoM, the best performance the implementation offers).

have been averaged to present one result per use case,
as shown in Fig. 6.

On the one hand, as expected the three desktop GPUs
present higher power consumption than both MPPA-256-N
and Jetson TX2, especially RTX 2080, which is also the one
with more resources usage. On the other hand, regarding
MPPA-256-N and Jetson TX2, both of them were chosen
precisely because of their energy efficiency, which is shown
in this study. Both of them present results far from the ones
obtained with the desktop GPUs, which makes them suitable
for accelerating applications with low power consumption
requirements. Specifically, among the platforms selected in
this research work, Jetson TX2 is the one with the best
balance between energy efficiency and performance, since it
achieves fast results while maintaining the power consump-
tion within reasonable limits.

3) GLOBAL COMPARISON

To conclude this discussion, Fig. 7 provides a global com-
parison, for both use cases, of the FoMs described at the
beginning of this section. As a reminder, all of them link

152330

processing time and power consumption: FoM 1 is a general
index, FoM?2 gives more importance to the time and FoM 3
favors the power consumption. In any case, the higher the
FoM, the better the performance the implementation offers.
As it can be observed, in general lines the best FoMs are
obtained for Jetson TX2, which is consistent with the con-
clusion obtained from the previous discussion.

Furthermore, we can also see that the size of the images
has an important impact on the performance of the plat-
form. On the one hand, for the neurosurgical use case —i.e.,
the one with smaller images— both MPPA-256-N and Jetson
TX2 present better FoMsthan the rest (Fig. 7.a), but it turns
around for the dermatological use case (Fig. 7.b). This is
easily explained with the memory resources of the GPUs:
the larger the images to process, the higher the performance.
However, for the low-power platforms, the resources are
already fully exploited and more iterations are required; thus,
no performance improvement is achieved.

On the other hand, for the dermatological use case —i.e.,
the one with larger images—, it can be observed that, depend-
ing on the FoM, GTX 1060 starts to outperform Jetson TX2,
becoming also a good option.

V. CONCLUSION

This paper presents an evaluation of the performance and
power consumption of two different HS medical applica-
tions implemented onto different HPC architectures. These
applications have been chosen because they have different
constraints: the neurosurgical use case requires real-time pro-
cessing, since its objective is to help surgeons detect brain
tumors during surgical procedures, while the dermatological
use case favors low-power consumption, as one of its main
features is to be an independent portable system.

To evaluate the applications, three different HS images
have been chosen for each use case (available in the sup-
plementary material), and they have been processed using a
SS classification approach, composed of three different algo-
rithms: PCA for dimensionality reduction, SVM to provide a
classification, and KNN to spatially filter the results.

The obtained results show that, as initially expected,
the three desktop GPUs are the ones providing fastest
results, since they are the ones providing more computational
resources; however, their energy consumption makes them
not suitable to be used in applications where low-power
consumption is compulsory.

In that case, both MPPA-256-N and Jetson TX2 present
themselves as alternatives. On the one hand, MPPA-256-N is
a manycore platform specifically thought for low-power con-
sumption applications. As observed in the results, although
in general terms it cannot compete with GPUs performance
capabilities, this platform provides surprisingly good results
for applications requiring substantial amounts of operations
while keeping the memory usage within reasonable limits,
since it is its main limitation.

On the other hand, Jetson TX2 comes from a family
of GPUs with less computational resources, but also with

VOLUME 7, 2019

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

IEEE Access

considerably

less power consumption. As shown in

Section IV, the great difference of power consumption
between the desktop GPUs and the Jetson TX2 clearly
outgrows the difference in performance, which makes this
platform the most suitable for both applications. However,
when there are no power limitations and very tight real-time
requirements, the optimal platform is the RTX 2080 GPU.

ACKNOWLEDGMENT

The authors would like to thank NVIDIA Corporation for
the donation of the NVIDIA Tesla K40 GPU used for this
research.

REFERENCES

(1]
[2]

[3]

[4]

[5]

[6]

[71
[8

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Smith, “Introduction to hyperspectral imaging,” Microimages.
Retrieved, Jun. 2006, pp. 1-24.

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral
remote sensing and its application in vegetation and water resource stud-
ies,” Water SA, vol. 33, no. 2, pp. 145-152, 2007.

G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and
M. C. G. Aalders, “Hyperspectral imaging for non-contact analysis of
forensic traces,” Forensic Sci. Int., vol. 223, nos. 1-3, pp. 28-39, 2012.
G. Elmasry, M. Kamruzzaman, D. W. Sun, and P. Allen, “Principles
and applications of hyperspectral imaging in quality evaluation of agro-
food products: A review,” Crit. Rev. Food Sci. Nutrition, vol. 52, no. 11,
pp. 999-1023, Jul. 2012.

G. Bonifazi, R. Palmieri, and S. Serranti, ‘““Hyperspectral imaging applied
to end-of-life (EOL) concrete recycling,” Technisches Messen, vol. 82,
no. 12, pp. 616-624, Dec. 2015.

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, ‘“Hyperspectral
imaging in the medical field: Present and future,” Appl. Spectrosc. Rev.,
vol. 49, no. 6, pp. 435-447, 2014.

G. Lu and B. Fei, ““Medical hyperspectral imaging: A review,” Proc. SPIE,
vol. 19, no. 1, Jan. 2014, Art. no. 10901.

S. Ortega, H. Fabelo, D. K. Iakovidis, A. Koulaouzidis, and G. M. Callico,
“Use of hyperspectral/multispectral imaging in gastroenterology. Shed-
ding some—different-light into the dark,” J. Clin. Med., vol. 8, no. 1, p. 36,
Jan. 2019.

M. Halicek, J. V. Little, X. Wang, A. Y. Chen, and B. Fei, “Optical
biopsy of head and neck cancer using hyperspectral imaging and convo-
lutional neural networks,” J. Biomed. Opt., vol. 24, no. 3, p. 1, Mar. 2019,
Art. no. 036007.

S. Ortega, H. Fabelo, R. Camacho, M. de la Luz Plaza, G. M. Callicé,
and R. Sarmiento, “Detecting brain tumor in pathological slides using
hyperspectral imaging,” Biomed. Opt. Express, vol. 9, no. 2, pp. 818-831,
Feb. 2018.

E. L. P. Larsen, L. L. Randeberg, E. Olstad, O. A. Haugen, A. Aksnes,
and L. O. Svaasand, “Hyperspectral imaging of atherosclerotic plaques in
vitro,” Proc. SPIE, vol. 16, no. 2, Feb. 2011, Art. no. 026011.

D. R. McCormack, A.J. Walsh, W. Sit, C. L. Arteaga, J. Chen, R. S. Cook,
and M. C. Skala, ““In vivo hyperspectral imaging of microvessel response to
trastuzumab treatment in breast cancer xenografts,” Biomed. Opt. Express,
vol. 5, no. 7, pp. 2247-2261, 2014.

H. Fabelo, “In-vivo hyperspectral human brain image database for brain
cancer detection,” IEEE Access, vol. 7, pp. 39098-39116, 2019.

J. M. Benavides, S. Chang, S. Y. Park, R. Richards-Kortum, N. Mackinnon,
C. MacAulay, A. Milbourne, A. Malpica, and M. Follen, ‘“Multispectral
digital colposcopy for in vivo detection of cervical cancer,” Opt. Express,
vol. 11, no. 10, pp. 1223-1236, 2003.

H. Fabelo, M. Halicek, S. Ortega, M. Shahedi, A. Szolna, J. F. Pifieiro,
C. Sosa, A. J. O’Shanahan, S. Bisshopp, C. Espino, M. Mairquez,
M. Herndndez, D. Carrera, J. Morera, G. M. Callico, R. Sarmiento, and
B. Fei, “Deep learning-based framework for in vivo identification of
glioblastoma tumor using hyperspectral images of human brain,” Sensors,
vol. 19, no. 4, p. 920, Feb. 2019.

G. Lu, L. Halig, D. Wang, Z. G. Chen, and B. Fei, “Hyperspectral imaging
for cancer surgical margin delineation: Registration of hyperspectral and
histological images,” Proc. SPIE, Med. Imag. 2014, Image-Guided Proce-
dures, Robot. Intervent., Model., vol. 9036, Mar. 2014, Art. no. 90360S.
B. Regeling, B. Thies, A. O. H. Gerstner, S. Westermann, N. A. Miiller,
J. Bendix, and W. Laffers, ‘“Hyperspectral imaging using flexible
endoscopy for laryngeal cancer detection,” Sensors, vol. 16, no. 8, p. 1288,
Aug. 2016.

VOLUME 7, 2019

(18]

[19]

(20]

(21]

[22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

H. Fabelo et al., “Spatio-spectral classification of hyperspectral images
for brain cancer detection during surgical operations,” PLoS ONE, vol. 13,
no. 3, Mar. 2018, Art. no. e0193721.

H. Fabelo et al., “An intraoperative visualization system using hyperspec-
tral imaging to aid in brain tumor delineation,” Sensors, vol. 18, no. 2,
p. 430, 2018.

M. Halicek, H. Fabelo, S. Ortega, G. M. Callico, and B. Fei, “In-vivo
and ex-vivo tissue analysis through hyperspectral imaging techniques:
Revealing the invisible features of cancer,” Cancers, vol. 11, no. 6, p. 756,
May 2019.

M. Li, S. Zang, B. Zhang, S. Li, and C. Wu, “A review of remote sensing
image classification techniques: The role of Spatio-contextual informa-
tion,” Eur. J. Remote Sens., vol. 47, no. 1, pp. 389411, 2014.

D. Ravi, H. Fabelo, G. M. Callico, and G. Yang, “Manifold embedding
and semantic segmentation for intraoperative guidance with hyperspectral
brain imaging,” IEEE Trans. Med. Imag., vol. 36, no. 9, pp. 1845-1857,
Sep. 2017.

G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspec-
tral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6,
pp. 1351-1362, Jun. 2004.

C. H. Lee and H.-J. Yoon, “Medical big data: Promise and challenges,”
Kidney Res. Clin. Pract., vol. 36, no. 1, pp. 3—-11, Mar. 2017.

K. Huang, S. Li, X. Kang, and L. Fang, “Spectral-spatial hyperspectral
image classification based on KNN,” Sens. Imag., vol. 17, no. 1, pp. 1-13,
Dec. 2016.

V. Zheludev, 1. Polonen, N. Neittaanmiki-Perttu, A. Averbuch,
P. Neittaanmiki, M. Gronroos, and H. Saari, “Delineation of malignant
skin tumors by hyperspectral imaging using diffusion maps dimensionality
reduction,” Biomed. Signal Process. Control, vol. 16, pp. 48—60, Feb. 2015.
N. Chiang, J. K. Jain, J. Sleigh, and T. Vasudevan, ‘““Evaluation of hyper-
spectral imaging technology in patients with peripheral vascular disease,”
J. Vascular Surg., vol. 66, no. 4, pp. 1192-1201, Oct. 2017.

S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. D. De Dinechin, “The
shift to multicores in real-time and safety-critical systems,” in Proc. Int.
Conf. Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Oct. 2015,
pp. 220-229.

F. Melgani and L. Bruzzone, ““Classification of hyperspectral remote sens-
ing images with support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.

T.-F. Wu, C.-]. Lin, and R. C. Weng, ‘““Probability estimates for multi-
class classification by pairwise coupling,” J. Mach. Learn. Res., vol. 5,
pp. 975-1005, Aug. 2004.

D. Madronal, R. Lazcano, R. Salvador, H. Fabelo, S. Ortega, G. M. Callico,
E. Juarez, and C. Sanz, “SVM-based real-time hyperspectral image clas-
sifier on a manycore architecture,” J. Syst. Archit., vol. 80, pp. 30-40,
Oct. 2017.

R. Lazcano, D. Madroiial, H. Fabelo, S. Ortega, R. Salvador, G. M. Callico,
E. Juarez, and C. Sanz, “Adaptation of an iterative PCA to a manycore
architecture for hyperspectral image processing,” J. Signal Process. Syst.,
pp. 1-13, May 2018.

L. Ma, M. M. Crawford, X. Yang, and Y. Guo, ‘““‘Local-manifold-learning-
based graph construction for semisupervised hyperspectral image classifi-
cation,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 28322844,
May 2015.

G. Florimbi, H. Fabelo, E. Torti, R. Lazcano, D. Madroiial, S. Ortega,
R. Salvador, F. Leporati, G. Danese, A. Biez-Quevedo, G. M. Callicé, E.
Judrez, C. Sanz, and R. Sarmiento, “‘Accelerating the K-nearest neighbors
filtering algorithm to optimize the real-time classification of human brain
tumor in hyperspectral images,” Sensors, vol. 18, no. 7, p. 2314, Jul. 2018.
NVIDIA. cuBLAS Library Documentation, CUDA Toolkit Documenta-
tion. Accessed: Jul. 12, 2019. [Online]. Available: https://docs.nvidia.
com/cuda/cublas/index.html

S.Rennich. CUDA C/C++ Streams and Concurrency, NVIDIA Developer.
Accessed: Jul. 12, 2019. [Online]. Available: https://developer.download.
nvidia.com/CUDA/training/StreamsAndConcurrency Webinar.pdf
NVIDIA. cuSOLVER Lbrary Documentation, CUDA Toolkit Documen-
tation. Accessed: Jul. 12, 2019. [Online]. Available: https://docs.nvidia.
com/cuda/cusolver/index.html

V. Volkov, Understanding Latency Hiding on GPUs. Berkeley, CA, USA:
UC Berkeley, 2016.

M. Harris. (2007). Optimizing Parallel Reduction in CUDA,
Nvidia Developer Technology. Accessed: Jun. 29, 2019. [Online].
Available: http://developer.download.nvidia.com/compute/cuda/1.1-
Beta/x86_website/projects/reduction/doc/reduction.pdf

152331

IEEE Access

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

[40] T. Wang, L. Guo, G. Li, J. Li, R. Wang, M. Ren, and J. He, “Imple-
menting the jacobi algorithm for solving eigenvalues of symmetric
matrices with CUDA,” in Proc. 7th Int. Conf. Netw., Archit., Storage,
Jun. 2012, pp. 69-78.

[41] J. Hascoét, B. D. de Dinechin, P. G. de Massas, and M. Q. Ho, “Asyn-
chronous one-sided communications and synchronizations for a clustered
manycore processor,” in Proc. 15th IEEE/ACM Symp. Embedded Syst.
Real-Time Multimedia, Oct. 2017, pp. 51-60.

RAQUEL LAZCANO received the B.Sc. degree
in communication electronics engineering and the
M.Sc. degree in systems and services engineer-
ing for the information society from the Uni-
versidad Politécnica de Madrid (UPM), Spain,
in 2014 and 2015, respectively, where she is cur-
rently pursuing the Ph.D. degree in systems and
services engineering for the information society
with the Electronic and Microelectronic Design
Group (GDEM). In 2015, she stayed four months
at the Institute of Electronics and Telecommunications of Rennes (IETR),
National Institute of Applied Sciences (INSA), France, as an Interchange
Student of the M.Sc. degree. She is the author or a coauthor of nine indexed
journals and 17 contributions to technical conferences. Her research interests
include high-performance multicore processing systems, real-time hyper-
spectral image processing, and the automatic optimization of the parallelism
in real-time systems.

DANIEL MADRONAL received the B.Sc. degree
in communication electronics engineering and the
M.Sc. degree in systems and services engineer-
ing for the information society from the Uni-
versidad Politécnica de Madrid (UPM), Spain,
in 2014 and 2015, respectively, where he is cur-
rently pursuing the Ph.D. degree in systems and
services engineering for the information society
with the Electronic and Microelectronic Design
Group (GDEM). In 2015, he stayed four months at
the National Institute of Applied Sciences (INSA), France, as an Interchange
Student of the M.Sc. degree. He is the author or a coauthor of nine indexed
journals and 18 contributions to technical conferences. His research inter-
ests include high-performance multi- and many-core processing systems,
real-time hyperspectral image processing, and the automatic optimization of
the energy consumption in high-performance systems.

GIORDANA FLORIMBI was born in Teramo,
Italy, in 1989. She received the bachelor’s degree
in biomedical engineering from the Universita
Politecnica delle Marche, Ancona, Italy, in 2012,
and the master’s degree in bioengineering and
the Ph.D. degree in bioengineering and bioinfor-
matics from the University of Pavia, Pavia, Italy,
in 2015 and 2019, respectively, where she is cur-
rently a Postdoctoral Researcher with the Engi-
neering Faculty. Her research interest includes
real-time elaborations in the support medical systems development and in
neuroscience, exploiting HPC technologies.

JAIME SANCHO received the B.Sc. degree in
telecommunication engineering and the M.Sc.
degree in systems and services engineering for the
information society from the Universidad Politéc-
nica de Madrid (UPM), Spain, in 2017 and 2018,
respectively, where he is currently pursuing the
Ph.D. degree in systems and services engineering
for the information society with the Electronic
and Microelectronic Design Group (GDEM).
His research interests include high-performance
graphics processing systems, real-time hyperspectral image processing, and
immersive computer vision applications.

152332

SERGIO SANCHEZ received the B.Sc. degree
in sound and image engineering from the Uni-
versidad Politécnica de Madrid (UPM), Spain,
in 2019, where he is currently a Researcher with
the Electronic and Microelectronic Design Group
(GDEM). His research interests include the design
of hyperspectral image processing techniques
and machine learning algorithms for real-time
applications.

RAQUEL LEON received the Telecommunica-
tion Engineer degree and the research master’s
degree in telecommunication technologies from
the University of Las Palmas de Gran Canaria,
Spain, in 2017, and 2018, respectively. Since then,
she has been conducting her research activity in
the Integrated System Design Division, Institute
for Applied Microelectronics, University of Las
Palmas de Gran Canaria, in the field of electronic

: and bioengineering. In 2018, she started to work
as a Researcher in the ITHaCA project (hyperspectral identification of brain
tumors). Her current research interest includes the use of hyperspectral
imaging for real-time cancer detection.

HIMAR FABELO received the Telecommunica-
tion Engineer degree and the Ph.D. degree in
telecommunication technologies from the Univer-
sity of Las Palmas de Gran Canaria, Las Palmas de
Gran Canaria, Spain, in 2014, and 2019, respec-
tively. Since then, he has been conducting his
research activity in the Integrated System Design
Division, Institute for Applied Microelectronics,
University of Las Palmas de Gran Canaria, in the

. field of electronic and bioengineering. In 2015,
he started to work as a Coordination Assistant and a Researcher in the
HELICoiD European project, co-funded by the European Commission.
In 2018, he performed a research stay at the Department of Bioengineering,
Erik Jonsson School of Engineering and Computer Science, The University
of Texas at Dallas, collaborating with Prof. B. Fei in the use of medical
hyperspectral imaging analysis using deep learning. His research interests
include the use of machine learning and deep learning techniques applied to
hyperspectral images to discriminate between healthy and tumor samples for
human brain tissues in real-time during neurosurgical operations.

SAMUEL ORTEGA received the Telecommuni-
cation Engineer degree and the research master
degree in telecommunication technologies from
the University of Las Palmas de Gran Canaria,
Spain, in 2014, and 2015, respectively. Since then,
he has been conducting his research activity in
the Integrated System Design Division, Institute
for Applied Microelectronics, University of Las
Palmas de Gran Canaria, in the field of electronic

3 and bioengineering. In 2015, he started to work
as a Coordination Assistant and a Researcher in the HELICoiD European
project, co-funded by the European Commission. His current research inter-
est includes the use of machine learning algorithms in medical applications
using hyperspectral images.

VOLUME 7, 2019

R. Lazcano et al.: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

IEEE Access

EMANUELE TORTI (M’ 13) was born in Voghera,
Italy, in 1987. He received the bachelor’s degree in
electronic engineering, the master’s degree (cum
laude) in computer science engineering, and the
Ph.D. degree in electronics and computer sci-
ence engineering from the University of Pavia,
Pavia, Italy, in 2009, 2011, and 2014, respec-
tively, where he is currently an Assistant Profes-
sor with the Engineering Faculty. His research
interest includes high-performance architectures
for real-time image processing and signal elaboration.

RUBEN SALVADOR received the Ph.D. degree
in electrical and computer engineering from the
Universidad Politécnica de Madrid (UPM), where
he is currently an Assistant Professor with the
Department of Telematics and Electronics Engi-
neering and a Researcher with the Center on Soft-
ware Technologies and Multimedia Systems for
Sustainability (CITSEM-UPM). In 2009, he was
a Visiting Research Student (for four months)
with the Department of Computer Systems, Brno
University of Technology. In 2017, he was a Visiting Professor (for five
months) with IETR/INSA, Rennes. He was a Research Assistant with the
Center of Industrial Electronics (CEI-UPM), from 2006 to 2011, and the
Intelligent Vehicle Systems Division, University Institute for Automobile
research (INSIA-UPM), from 2005 to 2006. He is the author/coauthor of
around 40 peer-reviewed publications in international journals/conferences
and one book chapter. His research interest includes high-performance and
self-adaptive computer systems, with a particular focus in the design of
reconfigurable and parallel heterogeneous accelerators for embedded sys-
tems. Applications of his work have included evolvable hardware for systems
self-adaptation in harsh environments and acceleration of machine learning
applied to hyperspectral image processing for cancer detection. He serves as
a TPC Member for various international conferences and acts as a Reviewer
for a number of international journals/conferences. He has participated in
nine EU/national research projects and nine industrial projects.

MARGARITA MARRERO-MARTIN received the
M.S. degree in telecommunication engineering
and the Ph.D. degree from the University of
Las Palmas de Gran Canaria (ULPGC), Spain,
in 2001 and 2012, respectively, where she is cur-
rently an Associate Professor. She researches with
the Institute for Applied Microelectronics, Micro-
electronics Technology Division. Until 2017, her
research lines of interest were the characterization,
modeling, and design of RF integrated passive
components. She has participated as a Researcher in national and European
funded projects, coauthoring more than 50 articles in journal articles and
conferences. In 2017, she changed her field of research to the area of
bioengineering, specifically the use of hyperspectral imaging to detect cancer
in real time. She has occupied different management positions at the ULPGC

FRANCESCO LEPORATI received the Ph.D.
degree in electronics and computer engineering
from the University of Pavia, Pavia, Italy, in 1993,
where he is currently an Associate Professor with
the Industrial Informatics and Embedded Systems
and Digital Systems Design, Engineering Faculty.
His research interests include automotive applica-
tions, FPGA and application-specific processors,
embedded real-time systems, and computational
physics. He is also a member of the Euromicro
Society and an Associate Editor of Microprocessors and Microsystems.

VOLUME 7, 2019

EDUARDO JUAREZ (M’96) received the Ph.D.
degree from the EPFL, in 2003. From 1994 to
1997, he was a Researcher with the Digital Archi-
tecture Group, UPM, and a Visiting Researcher
with ENST, Brest, France, and the University
of Pennsylvania, Philadelphia, PA, USA. From
1998 to 2000, he was an Assistant with the Inte-
< 5 grated Systems Laboratory (LSI), EPFL. From
H L&ﬁ 2000 to 2003, he was a Senior Systems Engi-
L neer with the Design Centre, Transwitch Corp.,
Sw1tzerland In December 2004, he joined the GDEM as a Postdoctoral
Researcher. Since 2007, he has been an Assistant Professor with UPM.
He is a coauthor of one book and the author or a coauthor of more than
50 articles and contributions to technical conferences. His research interest
includes solving, from a holistic perspective, the power/energy consumption
optimization problem of multimedia handheld devices. He has participated in
nine competitive research projects and 18 noncompetitive industrial projects.

GUSTAVO M. CALLICO (M’08) received the M..S.
degree (Hons.) in telecommunication engineering
and the Ph.D. and the European Doctorate degrees
(Hons.) from the University of Las Palmas de Gran
Canaria (ULPGC), in 1995 and 2003, respectively,
where he is currently an Associate Professor.

From 1996 to 1997, he was granted with a
research grant from the National Educational Min-
istry. In 1997, he was hired by the university as an
Electronic Lecturer. In 1994, he joined the Institute
for Apphed Microelectronics (IUMA). From 2000 to 2001, he stayed at
the Philips Research Laboratories (NatLab), Eindhoven, The Netherlands,
as a Visiting Scientist, where he developed his Ph.D. thesis. He currently
develops his research activities in the Integrated Systems Design Division,
Institute for Applied Microelectronics (IUMA). He has more than 110 pub-
lications in national and international journals, conferences, and book chap-
ters. He has participated in 18 research projects funded by the European
Community, the Spanish Government, and international private industries.
Since 2015, he has been the responsible for the scientific-technological
equipment project called Hyperspectral Image Acquisition System of High
Spatial and Spectral Definition, granted by the General Directorate of
Research and Management of the National Research and Development
Plan, funded through the General Directorate of Scientific Infrastructure.
He has been a Coordinator of the European project HELICoiD [Future and
Emerging Technologies (FET)] under the Seventh Framework Program. His
current research interests include hyperspectral imaging for real-time cancer
detection, real-time super-resolution algorithms, synthesis-based design for
SOCs and circuits for multimedia processing, and video coding standards,
especially for H.264 and SVC. He has been an Associate Editor of the IEEE
TransacTiONs oN CoNsuMER ELECTRONICS, since 2009. He is also a Senior
Associated Editor of the IEEE TRANsACTIONs ON CONSUMER ELECTRONICS.
He has been an Associate Editor of IEEE Acckss, since 2016.

CESAR SANZ (S’87-M’88-SM’13) received the
Ph.D. degree from the Universidad Politécnica de
Madrid (UPM), Madrid, Spain, in 1998, where he
is currently a Full Professor with the ETSIS de
Telecomunicacién. He has been the Director of
the ETSIS de Telecomunicacién for eight years.
He also leads the Electronic and Microelectronic
Design Group, UPM, where he has been involved
in research and development Projects. Since 2013,
he has been a Researcher with CITSEM. His cur-
rent research interest includes microelectronic design applied to real-time
image processing.

152333

