Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/57514
Título: A Line-by-Line Fast Anomaly Detector for Hyperspectral Imagery
Autores/as: Díaz Martín, María 
Guerra Hernández, Raúl Celestino 
Horstrand, Pablo
López Suárez, Sebastián 
Sarmiento Rodríguez, Roberto 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Anomaly detection (AD)
Hyperspectral imagery
Line-by-Line Fast Anomaly Detector for Hyperspectral Imagery (LbL-FAD) algorithm
Line-by-line processing
Orthogonal projections, et al.
Fecha de publicación: 2019
Proyectos: European Initiative to Enable Validation for Highly Automated Safe and Secure Systems 
Iniciativa Europea Para Facilitar la Validacion de Sistemas Seguros y Altamente Automatizados 
Plataforma Hw/Sw Distribuida Para El Procesamiento Inteligente de Información Sensorial Heterogenea en Aplicaciones de Supervisión de Grandes Espacios Naturales 
Publicación seriada: IEEE Transactions on Geoscience and Remote Sensing 
Resumen: In recent years, anomaly detection (AD) has enjoyed a growing interest in hyperspectral data analysis. However, most state-of-the-art detectors need to work with the entire hyperspectral cube, what prevents their use for applications under real-time constraints, especially when the hyperspectral data are collected by push-broom scanners that acquire the hyperspectral images (HSIs) in a line-by-line fashion. In this paper, a Line-by-Line Fast Anomaly Detector for Hyperspectral Imagery (LbL-FAD) is proposed, which is capable of processing each sensed line as soon as it is captured. The LbL-FAD works under the assumption that anomalous pixels cannot be well represented by the background distribution. It uses an orthogonal projection strategy for extracting a set of pixels from the first captured hyperspectral frames, i.e., lines of pixels, that are used for representing the background distribution. Using these pixels, the LbL-FAD proposes a hardware-friendly alternative to compute the orthogonal subspace to that spanned by the selected background samples, making the anomalous pixels better detectable. In addition, the LbL-FAD incorporates an automatic thresholding method which provides line-by-line and real-time binary maps where anomalous targets are segmented from the background. This novelty clearly differentiates the proposed LbL-FAD from the conventional anomaly detectors, which usually are not able to automatically discriminate anomalous pixels from background pixels until the entire image is processed. Several experiments have been carried out using real HSIs collected by different sensors. The obtained results clearly support the benefits of our proposal, both in terms of the accuracy of the detection performance and the computational complexity.
URI: http://hdl.handle.net/10553/57514
ISSN: 0196-2892
DOI: 10.1109/TGRS.2019.2923921
Fuente: IEEE Transactions on Geoscience and Remote Sensing [ISSN 0196-2892], v. 57(11), p. 8968-8982
Colección:Artículos
Vista completa

Citas SCOPUSTM   

24
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

21
actualizado el 24-nov-2024

Visitas

143
actualizado el 31-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.