Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/56268
DC FieldValueLanguage
dc.contributor.authorDarwish, Mohamed Abdallaen_US
dc.contributor.authorHenderson, Johnnyen_US
dc.contributor.authorSadarangani, Kishinen_US
dc.date.accessioned2019-07-29T08:48:29Z-
dc.date.available2019-07-29T08:48:29Z-
dc.date.issued2016en_US
dc.identifier.issn0973-5321en_US
dc.identifier.urihttp://hdl.handle.net/10553/56268-
dc.description.abstractWe investigate a new quadratic integral equation of arbitrary orders with maxi-mum and prove an existence result for it. We will use a fixed point theorem due toDarbo as well as the monotonicity measure of noncompactness due to Bana ́s andOlszowy to prove that our equation has at least one solution inC[0,1]which ismonotonic on [0,1].en_US
dc.languageengen_US
dc.relation.ispartofAdvances in Dynamical Systems and Applicationsen_US
dc.sourceAdvances in Dynamical Systems and Applications [ISSN 0973-5321], v. 11 (2), p. 93–104en_US
dc.subject12 Matemáticasen_US
dc.subject.otherFractionalen_US
dc.subject.otherMonotonic solutionsen_US
dc.subject.otherMonotonicity measure of noncompactnessen_US
dc.subject.otherQuadratic integral equationen_US
dc.subject.otherDarbo theoremen_US
dc.titleSolvability of a maximum quadratic Integral equation of arbitrary ordersen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasAMS Subject Classifications: 45G10; 47H09; 45M99en_US
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (196,95 kB)
Show simple item record

Page view(s)

83
checked on Oct 19, 2024

Download(s)

25
checked on Oct 19, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.