Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/55761
Title: | An efficient 3D color-texture feature and neural network technique for melanoma detection | Authors: | Warsi, Firoz Khanam, Ruqaiya Kamya, Suraj Suárez Araujo, Carmen Paz |
UNESCO Clasification: | 120304 Inteligencia artificial 32 Ciencias médicas 220990 Tratamiento digital. Imágenes |
Keywords: | Melanoma Color texturefeature Dermoscopic image Neural network classifier and skin cancer |
Issue Date: | 2019 | Journal: | Informatics in Medicine Unlocked | Abstract: | Malignant melanoma is the deadliest form of skin cancer, but can be more readily treated successfully if detected in its early stages. Due to the increasing incidence of melanoma, research in the field of autonomous melanoma detection has accelerated. In this paper, a new method for feature extraction from dermoscopic images, termed multi-direction 3D color-texture feature (CTF), is proposed, and detection is performed using a back propagation multilayer neural network (NN) classifier. The proposed method is tested on the PH 2 dataset (publicly available) in terms of accuracy, sensitivity, and specificity. The extracted combined CTF is fairly discriminative. When it is input and tested in a neural network classifier that is provided, encouraging results are obtained, i.e. accuracy = 97.5%, sensitivity = 98.1% and specificity = 93.84%. Comparative result analyses with other methods are also discussed, and the results are also improved over benchmarking results for the PH2 dataset. | URI: | http://hdl.handle.net/10553/55761 | ISSN: | 2352-9148 | DOI: | 10.1016/j.imu.2019.100176 | Source: | Informatics in Medicine Unlocked [ISSN 2352-9148], v. 17 (2019), 100176 |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.