Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/55752
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Travieso González, Carlos Manuel | en_US |
dc.contributor.author | Ravelo García, Antonio Gabriel | en_US |
dc.contributor.author | Alonso Hernández, Jesús Bernardino | en_US |
dc.contributor.author | Canino Rodríguez, José Miguel | en_US |
dc.contributor.author | Dutta, Malay Kishore | en_US |
dc.date.accessioned | 2019-06-10T21:40:27Z | - |
dc.date.available | 2019-06-10T21:40:27Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 0924-669X | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/55008 | - |
dc.description.abstract | This work presents automatic identification and verification approaches based on lip biometrics, using a static lip shape and applying a lip correction preprocessing, transforming data from Hidden Markov Model and being classified by Support Vector Machines. The classification system is conclusive for the identification of a person by the shape of the lips, even if the person presents soft facial emotions. Moreover the use of static lips shape has been revealed as a good option for security applications. The experiments have been carried out with two public datasets. One dataset was used to model and validate the approach, and the other dataset has been used to test the model blindly. The accuracy is up to 100% and 99.76% for GDPS-ULPGC and RaFD datasets respectively, using two training samples under a hold-out validation. Based on the results we can conclude that the system is very robust and stable with the highest classification capacity and minimal computation complexity. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Applied Intelligence | en_US |
dc.source | Applied Intelligence [ISSN 0924-669X], v. 49 (5), p. 1823-1840 | en_US |
dc.subject | Investigación | en_US |
dc.subject.other | Lip-based biometrics | en_US |
dc.subject.other | Image processing | en_US |
dc.subject.other | Pattern recognition | en_US |
dc.subject.other | Automatic identification | en_US |
dc.subject.other | Artificial intelligence | en_US |
dc.title | Improving the performance of the lip identification through the use of shape correction | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10489-018-1352-6 | |
dc.identifier.scopus | 2-s2.0-85058547248 | - |
dc.identifier.scopus | 85058547248 | - |
dc.identifier.isi | 000463843400012 | |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.authorscopusid | 6602376272 | - |
dc.contributor.authorscopusid | 9634135600 | - |
dc.contributor.authorscopusid | 24774957200 | - |
dc.contributor.authorscopusid | 56610232000 | - |
dc.contributor.authorscopusid | 35291803600 | - |
dc.description.lastpage | 1840 | - |
dc.identifier.issue | 5 | - |
dc.description.firstpage | 1823 | - |
dc.relation.volume | 49 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 265761 | |
dc.contributor.daisngid | 1986395 | |
dc.contributor.daisngid | 29084685 | |
dc.contributor.daisngid | 13140062 | |
dc.contributor.daisngid | 35026383 | |
dc.contributor.wosstandard | WOS:Travieso, CM | |
dc.contributor.wosstandard | WOS:Ravelo-Garcia, AG | |
dc.contributor.wosstandard | WOS:Alonso, JB | |
dc.contributor.wosstandard | WOS:Canino-Rodriguez, JM | |
dc.contributor.wosstandard | WOS:Dutta, MK | |
dc.date.coverdate | Mayo 2019 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 0,726 | |
dc.description.jcr | 3,325 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.orcid | 0000-0002-7866-585X | - |
crisitem.author.orcid | 0000-0003-4350-6223 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
crisitem.author.fullName | Alonso Hernández, Jesús Bernardino | - |
crisitem.author.fullName | Canino Rodríguez, José Miguel | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.