Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/55752
Título: | Improving the performance of the lip identification through the use of shape correction | Autores/as: | Travieso González, Carlos Manuel Ravelo García, Antonio Gabriel Alonso Hernández, Jesús Bernardino Canino Rodríguez, José Miguel Dutta, Malay Kishore |
Clasificación UNESCO: | Investigación | Palabras clave: | Lip-based biometrics Image processing Pattern recognition Automatic identification Artificial intelligence |
Fecha de publicación: | 2019 | Publicación seriada: | Applied Intelligence | Resumen: | This work presents automatic identification and verification approaches based on lip biometrics, using a static lip shape and applying a lip correction preprocessing, transforming data from Hidden Markov Model and being classified by Support Vector Machines. The classification system is conclusive for the identification of a person by the shape of the lips, even if the person presents soft facial emotions. Moreover the use of static lips shape has been revealed as a good option for security applications. The experiments have been carried out with two public datasets. One dataset was used to model and validate the approach, and the other dataset has been used to test the model blindly. The accuracy is up to 100% and 99.76% for GDPS-ULPGC and RaFD datasets respectively, using two training samples under a hold-out validation. Based on the results we can conclude that the system is very robust and stable with the highest classification capacity and minimal computation complexity. | URI: | http://hdl.handle.net/10553/55008 | ISSN: | 0924-669X | DOI: | 10.1007/s10489-018-1352-6 | Fuente: | Applied Intelligence [ISSN 0924-669X], v. 49 (5), p. 1823-1840 |
Colección: | Artículos |
Citas SCOPUSTM
5
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 17-nov-2024
Visitas
63
actualizado el 27-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.