Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/handle/10553/55092
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Mellouli, Dorra | en_US |
dc.contributor.author | Hamdani, Tarek M. | en_US |
dc.contributor.author | Sanchez-Medina, Javier J. | en_US |
dc.contributor.author | Ayed, Mounir Ben | en_US |
dc.contributor.author | Alimi, Adel M. | en_US |
dc.date.accessioned | 2019-02-18T16:28:55Z | - |
dc.date.available | 2019-02-18T16:28:55Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 2162-237X | en_US |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/55092 | - |
dc.description.abstract | Deep neural networks have proved promising results in many applications and fields, but they are still assimilated to a black box. Thus, it is very useful to introduce interpretability aspects to prevent the blind application of deep networks. This paper proposed an interpretable morphological convolutional neural network called Morph-CNN for pattern recognition, where morphological operations were incorporated using counter-harmonic mean into the convolutional layer in order to generate enhanced feature maps. Morph-CNN was extensively evaluated on MNIST and SVHN benchmarks for digit recognition. The different tested configurations showed that Morph-CNN outperforms the existing methods. | en_US |
dc.language | eng | en_US |
dc.publisher | 2162-237X | - |
dc.relation.ispartof | IEEE Transactions on Neural Networks and Learning Systems | en_US |
dc.source | IEEE Transactions on Neural Networks and Learning Systems [ISSN 2162-237X], v. 30 (9), p. 2876 - 2885 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Convolutional neural network (CNN) | en_US |
dc.subject.other | Deep neural networks (DNNs) | en_US |
dc.subject.other | Image recognition | en_US |
dc.subject.other | Interpretability | en_US |
dc.subject.other | Morphological CNN (Morph-CNN) | en_US |
dc.subject.other | Morphological operators | en_US |
dc.title | Morphological convolutional neural network architecture for digit recognition | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | es |
dc.identifier.doi | 10.1109/TNNLS.2018.2890334 | |
dc.identifier.scopus | 85060937013 | |
dc.identifier.isi | 000482589400025 | |
dc.contributor.authorscopusid | 26435354100 | |
dc.contributor.authorscopusid | 17434042000 | |
dc.contributor.authorscopusid | 26421466600 | |
dc.contributor.authorscopusid | 35092238600 | |
dc.contributor.authorscopusid | 7003687617 | |
dc.description.lastpage | 2885 | - |
dc.description.firstpage | 2876 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 7111180 | |
dc.contributor.daisngid | 31454799 | |
dc.contributor.daisngid | 1882101 | |
dc.contributor.daisngid | 534244 | |
dc.contributor.daisngid | 32553553 | |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Mellouli, D | |
dc.contributor.wosstandard | WOS:Hamdani, TM | |
dc.contributor.wosstandard | WOS:Sanchez-Medina, JJ | |
dc.contributor.wosstandard | WOS:Ben Ayed, M | |
dc.contributor.wosstandard | WOS:Mimi, AM | |
dc.date.coverdate | Septiembre 2019 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 3,555 | |
dc.description.jcr | 8,793 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2530-3182 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Sánchez Medina, Javier Jesús | - |
Colección: | Artículos |
Citas SCOPUSTM
66
actualizado el 30-mar-2025
Citas de WEB OF SCIENCETM
Citations
54
actualizado el 30-mar-2025
Visitas
168
actualizado el 09-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.