Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/handle/10553/55092
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mellouli, Dorra | en_US |
dc.contributor.author | Hamdani, Tarek M. | en_US |
dc.contributor.author | Sanchez-Medina, Javier J. | en_US |
dc.contributor.author | Ayed, Mounir Ben | en_US |
dc.contributor.author | Alimi, Adel M. | en_US |
dc.date.accessioned | 2019-02-18T16:28:55Z | - |
dc.date.available | 2019-02-18T16:28:55Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 2162-237X | en_US |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/55092 | - |
dc.description.abstract | Deep neural networks have proved promising results in many applications and fields, but they are still assimilated to a black box. Thus, it is very useful to introduce interpretability aspects to prevent the blind application of deep networks. This paper proposed an interpretable morphological convolutional neural network called Morph-CNN for pattern recognition, where morphological operations were incorporated using counter-harmonic mean into the convolutional layer in order to generate enhanced feature maps. Morph-CNN was extensively evaluated on MNIST and SVHN benchmarks for digit recognition. The different tested configurations showed that Morph-CNN outperforms the existing methods. | en_US |
dc.language | eng | en_US |
dc.publisher | 2162-237X | - |
dc.relation.ispartof | IEEE Transactions on Neural Networks and Learning Systems | en_US |
dc.source | IEEE Transactions on Neural Networks and Learning Systems [ISSN 2162-237X], v. 30 (9), p. 2876 - 2885 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Convolutional neural network (CNN) | en_US |
dc.subject.other | Deep neural networks (DNNs) | en_US |
dc.subject.other | Image recognition | en_US |
dc.subject.other | Interpretability | en_US |
dc.subject.other | Morphological CNN (Morph-CNN) | en_US |
dc.subject.other | Morphological operators | en_US |
dc.title | Morphological convolutional neural network architecture for digit recognition | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | es |
dc.identifier.doi | 10.1109/TNNLS.2018.2890334 | |
dc.identifier.scopus | 85060937013 | |
dc.identifier.isi | 000482589400025 | |
dc.contributor.authorscopusid | 26435354100 | |
dc.contributor.authorscopusid | 17434042000 | |
dc.contributor.authorscopusid | 26421466600 | |
dc.contributor.authorscopusid | 35092238600 | |
dc.contributor.authorscopusid | 7003687617 | |
dc.description.lastpage | 2885 | - |
dc.description.firstpage | 2876 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 7111180 | |
dc.contributor.daisngid | 31454799 | |
dc.contributor.daisngid | 1882101 | |
dc.contributor.daisngid | 534244 | |
dc.contributor.daisngid | 32553553 | |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Mellouli, D | |
dc.contributor.wosstandard | WOS:Hamdani, TM | |
dc.contributor.wosstandard | WOS:Sanchez-Medina, JJ | |
dc.contributor.wosstandard | WOS:Ben Ayed, M | |
dc.contributor.wosstandard | WOS:Mimi, AM | |
dc.date.coverdate | Septiembre 2019 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 3,555 | |
dc.description.jcr | 8,793 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2530-3182 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Sánchez Medina, Javier Jesús | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
66
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
54
checked on Mar 30, 2025
Page view(s)
168
checked on Mar 9, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.