Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/55092
DC FieldValueLanguage
dc.contributor.authorMellouli, Dorraen_US
dc.contributor.authorHamdani, Tarek M.en_US
dc.contributor.authorSanchez-Medina, Javier J.en_US
dc.contributor.authorAyed, Mounir Benen_US
dc.contributor.authorAlimi, Adel M.en_US
dc.date.accessioned2019-02-18T16:28:55Z-
dc.date.available2019-02-18T16:28:55Z-
dc.date.issued2019en_US
dc.identifier.issn2162-237Xen_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/55092-
dc.description.abstractDeep neural networks have proved promising results in many applications and fields, but they are still assimilated to a black box. Thus, it is very useful to introduce interpretability aspects to prevent the blind application of deep networks. This paper proposed an interpretable morphological convolutional neural network called Morph-CNN for pattern recognition, where morphological operations were incorporated using counter-harmonic mean into the convolutional layer in order to generate enhanced feature maps. Morph-CNN was extensively evaluated on MNIST and SVHN benchmarks for digit recognition. The different tested configurations showed that Morph-CNN outperforms the existing methods.en_US
dc.languageengen_US
dc.publisher2162-237X-
dc.relation.ispartofIEEE Transactions on Neural Networks and Learning Systemsen_US
dc.sourceIEEE Transactions on Neural Networks and Learning Systems [ISSN 2162-237X], v. 30 (9), p. 2876 - 2885en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherConvolutional neural network (CNN)en_US
dc.subject.otherDeep neural networks (DNNs)en_US
dc.subject.otherImage recognitionen_US
dc.subject.otherInterpretabilityen_US
dc.subject.otherMorphological CNN (Morph-CNN)en_US
dc.subject.otherMorphological operatorsen_US
dc.titleMorphological convolutional neural network architecture for digit recognitionen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticlees
dc.identifier.doi10.1109/TNNLS.2018.2890334
dc.identifier.scopus85060937013
dc.identifier.isi000482589400025
dc.contributor.authorscopusid26435354100
dc.contributor.authorscopusid17434042000
dc.contributor.authorscopusid26421466600
dc.contributor.authorscopusid35092238600
dc.contributor.authorscopusid7003687617
dc.description.lastpage2885-
dc.description.firstpage2876-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid7111180
dc.contributor.daisngid31454799
dc.contributor.daisngid1882101
dc.contributor.daisngid534244
dc.contributor.daisngid32553553
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mellouli, D
dc.contributor.wosstandardWOS:Hamdani, TM
dc.contributor.wosstandardWOS:Sanchez-Medina, JJ
dc.contributor.wosstandardWOS:Ben Ayed, M
dc.contributor.wosstandardWOS:Mimi, AM
dc.date.coverdateSeptiembre 2019
dc.identifier.ulpgces
dc.description.sjr3,555
dc.description.jcr8,793
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

66
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

54
checked on Mar 30, 2025

Page view(s)

168
checked on Mar 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.