Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55092
Título: Morphological convolutional neural network architecture for digit recognition
Autores/as: Mellouli, Dorra
Hamdani, Tarek M.
Sanchez-Medina, Javier J. 
Ayed, Mounir Ben
Alimi, Adel M.
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Convolutional neural network (CNN)
Deep neural networks (DNNs)
Image recognition
Interpretability
Morphological CNN (Morph-CNN), et al.
Fecha de publicación: 2019
Editor/a: 2162-237X
Publicación seriada: IEEE Transactions on Neural Networks and Learning Systems 
Resumen: Deep neural networks have proved promising results in many applications and fields, but they are still assimilated to a black box. Thus, it is very useful to introduce interpretability aspects to prevent the blind application of deep networks. This paper proposed an interpretable morphological convolutional neural network called Morph-CNN for pattern recognition, where morphological operations were incorporated using counter-harmonic mean into the convolutional layer in order to generate enhanced feature maps. Morph-CNN was extensively evaluated on MNIST and SVHN benchmarks for digit recognition. The different tested configurations showed that Morph-CNN outperforms the existing methods.
URI: http://hdl.handle.net/10553/55092
ISSN: 2162-237X
DOI: 10.1109/TNNLS.2018.2890334
Fuente: IEEE Transactions on Neural Networks and Learning Systems [ISSN 2162-237X], v. 30 (9), p. 2876 - 2885
Colección:Artículos
Vista completa

Citas SCOPUSTM   

64
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

53
actualizado el 15-dic-2024

Visitas

168
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.