Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/55092
Título: | Morphological convolutional neural network architecture for digit recognition | Autores/as: | Mellouli, Dorra Hamdani, Tarek M. Sanchez-Medina, Javier J. Ayed, Mounir Ben Alimi, Adel M. |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Convolutional neural network (CNN) Deep neural networks (DNNs) Image recognition Interpretability Morphological CNN (Morph-CNN), et al. |
Fecha de publicación: | 2019 | Editor/a: | 2162-237X | Publicación seriada: | IEEE Transactions on Neural Networks and Learning Systems | Resumen: | Deep neural networks have proved promising results in many applications and fields, but they are still assimilated to a black box. Thus, it is very useful to introduce interpretability aspects to prevent the blind application of deep networks. This paper proposed an interpretable morphological convolutional neural network called Morph-CNN for pattern recognition, where morphological operations were incorporated using counter-harmonic mean into the convolutional layer in order to generate enhanced feature maps. Morph-CNN was extensively evaluated on MNIST and SVHN benchmarks for digit recognition. The different tested configurations showed that Morph-CNN outperforms the existing methods. | URI: | http://hdl.handle.net/10553/55092 | ISSN: | 2162-237X | DOI: | 10.1109/TNNLS.2018.2890334 | Fuente: | IEEE Transactions on Neural Networks and Learning Systems [ISSN 2162-237X], v. 30 (9), p. 2876 - 2885 |
Colección: | Artículos |
Citas SCOPUSTM
64
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
53
actualizado el 15-dic-2024
Visitas
168
actualizado el 09-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.