Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/55091
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Marin-Reyes, Pedro Antonio | en_US |
dc.contributor.author | Bergamini, Luca | en_US |
dc.contributor.author | Lorenzo-Navarro, Javier | en_US |
dc.contributor.author | Palazzi, Andrea | en_US |
dc.contributor.author | Calderara, Simone | en_US |
dc.contributor.author | Cucchiara, Rita | en_US |
dc.date.accessioned | 2019-02-18T16:28:40Z | - |
dc.date.available | 2019-02-18T16:28:40Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.isbn | 9781538661000 | en_US |
dc.identifier.issn | 2160-7508 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/55091 | - |
dc.description.abstract | Vehicle re-identification plays a major role in modern smart surveillance systems. Specifically, the task requires the capability to predict the identity of a given vehicle, given a dataset of known associations, collected from different views and surveillance cameras. Generally, it can be cast as a ranking problem: given a probe image of a vehicle, the model needs to rank all database images based on their similarities w.r.t the probe image. In line with recent research, we devise a metric learning model that employs a supervision based on local constraints. In particular, we leverage pairwise and triplet constraints for training a network capable of assigning a high degree of similarity to samples sharing the same identity, while keeping different identities distant in feature space. Eventually, we show how vehicle tracking can be exploited to automatically generate a weakly labelled dataset that can be used to train the deep network for the task of vehicle re-identification. Learning and evaluation is carried out on the NVIDIA AI city challenge videos. | |
dc.language | spa | en_US |
dc.publisher | 2160-7508 | en_US |
dc.relation.ispartof | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops | en_US |
dc.source | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[ISSN 2160-7508],v. 2018-June (8575466), p. 166-171 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.title | Unsupervised vehicle re-identification using triplet networks | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) | |
dc.relation.conference | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018 | |
dc.identifier.doi | 10.1109/CVPRW.2018.00030 | |
dc.identifier.scopus | 85060889621 | |
dc.identifier.isi | 000457636800023 | |
dc.contributor.authorscopusid | 57191274555 | |
dc.contributor.authorscopusid | 15924875500 | |
dc.contributor.authorscopusid | 15042453800 | |
dc.contributor.authorscopusid | 57191537487 | |
dc.contributor.authorscopusid | 23099524400 | |
dc.contributor.authorscopusid | 7006870483 | |
dc.description.lastpage | 171 | - |
dc.identifier.issue | 8575466 | - |
dc.description.firstpage | 166 | - |
dc.relation.volume | 2018-June | - |
dc.type2 | Actas de congresos | en_US |
dc.contributor.daisngid | 15775956 | |
dc.contributor.daisngid | 12286502 | |
dc.contributor.daisngid | 3855775 | |
dc.contributor.daisngid | 1062730 | |
dc.contributor.daisngid | 2489695 | |
dc.contributor.daisngid | 93064 | |
dc.contributor.wosstandard | WOS:Marin-Reyes, PA | |
dc.contributor.wosstandard | WOS:Palazzi, A | |
dc.contributor.wosstandard | WOS:Bergamini, L | |
dc.contributor.wosstandard | WOS:Calderara, S | |
dc.contributor.wosstandard | WOS:Lorenzo-Navarro, J | |
dc.contributor.wosstandard | WOS:Cucchiara, R | |
dc.date.coverdate | 2018 | |
dc.identifier.conferenceid | events121134 | |
dc.identifier.ulpgc | Sí | es |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-2834-2067 | - |
crisitem.author.orcid | 0000-0002-2834-2067 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Lorenzo Navarro, José Javier | - |
crisitem.author.fullName | Lorenzo Navarro, José Javier | - |
crisitem.event.eventsstartdate | 18-06-2018 | - |
crisitem.event.eventsstartdate | 18-06-2018 | - |
crisitem.event.eventsenddate | 22-06-2018 | - |
crisitem.event.eventsenddate | 22-06-2018 | - |
Colección: | Actas de congresos |
Citas SCOPUSTM
34
actualizado el 30-mar-2025
Citas de WEB OF SCIENCETM
Citations
20
actualizado el 30-mar-2025
Visitas
94
actualizado el 09-sep-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.