Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/55091
DC FieldValueLanguage
dc.contributor.authorMarin-Reyes, Pedro Antonioen_US
dc.contributor.authorBergamini, Lucaen_US
dc.contributor.authorLorenzo-Navarro, Javieren_US
dc.contributor.authorPalazzi, Andreaen_US
dc.contributor.authorCalderara, Simoneen_US
dc.contributor.authorCucchiara, Ritaen_US
dc.date.accessioned2019-02-18T16:28:40Z-
dc.date.available2019-02-18T16:28:40Z-
dc.date.issued2018en_US
dc.identifier.isbn9781538661000en_US
dc.identifier.issn2160-7508en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/55091-
dc.description.abstractVehicle re-identification plays a major role in modern smart surveillance systems. Specifically, the task requires the capability to predict the identity of a given vehicle, given a dataset of known associations, collected from different views and surveillance cameras. Generally, it can be cast as a ranking problem: given a probe image of a vehicle, the model needs to rank all database images based on their similarities w.r.t the probe image. In line with recent research, we devise a metric learning model that employs a supervision based on local constraints. In particular, we leverage pairwise and triplet constraints for training a network capable of assigning a high degree of similarity to samples sharing the same identity, while keeping different identities distant in feature space. Eventually, we show how vehicle tracking can be exploited to automatically generate a weakly labelled dataset that can be used to train the deep network for the task of vehicle re-identification. Learning and evaluation is carried out on the NVIDIA AI city challenge videos.
dc.languagespaen_US
dc.publisher2160-7508en_US
dc.relation.ispartofIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshopsen_US
dc.sourceIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[ISSN 2160-7508],v. 2018-June (8575466), p. 166-171en_US
dc.subject120304 Inteligencia artificialen_US
dc.titleUnsupervised vehicle re-identification using triplet networksen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
dc.relation.conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018
dc.identifier.doi10.1109/CVPRW.2018.00030
dc.identifier.scopus85060889621
dc.identifier.isi000457636800023
dc.contributor.authorscopusid57191274555
dc.contributor.authorscopusid15924875500
dc.contributor.authorscopusid15042453800
dc.contributor.authorscopusid57191537487
dc.contributor.authorscopusid23099524400
dc.contributor.authorscopusid7006870483
dc.description.lastpage171-
dc.identifier.issue8575466-
dc.description.firstpage166-
dc.relation.volume2018-June-
dc.type2Actas de congresosen_US
dc.contributor.daisngid15775956
dc.contributor.daisngid12286502
dc.contributor.daisngid3855775
dc.contributor.daisngid1062730
dc.contributor.daisngid2489695
dc.contributor.daisngid93064
dc.contributor.wosstandardWOS:Marin-Reyes, PA
dc.contributor.wosstandardWOS:Palazzi, A
dc.contributor.wosstandardWOS:Bergamini, L
dc.contributor.wosstandardWOS:Calderara, S
dc.contributor.wosstandardWOS:Lorenzo-Navarro, J
dc.contributor.wosstandardWOS:Cucchiara, R
dc.date.coverdate2018
dc.identifier.conferenceidevents121134
dc.identifier.ulpgces
dc.description.ggs1
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.event.eventsstartdate18-06-2018-
crisitem.event.eventsstartdate18-06-2018-
crisitem.event.eventsenddate22-06-2018-
crisitem.event.eventsenddate22-06-2018-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

34
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

20
checked on Mar 30, 2025

Page view(s)

94
checked on Sep 9, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.