Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/55091
Título: | Unsupervised vehicle re-identification using triplet networks | Autores/as: | Marin-Reyes, Pedro Antonio Bergamini, Luca Lorenzo-Navarro, Javier Palazzi, Andrea Calderara, Simone Cucchiara, Rita |
Clasificación UNESCO: | 120304 Inteligencia artificial | Fecha de publicación: | 2018 | Editor/a: | 2160-7508 | Publicación seriada: | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops | Conferencia: | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018 |
Resumen: | Vehicle re-identification plays a major role in modern smart surveillance systems. Specifically, the task requires the capability to predict the identity of a given vehicle, given a dataset of known associations, collected from different views and surveillance cameras. Generally, it can be cast as a ranking problem: given a probe image of a vehicle, the model needs to rank all database images based on their similarities w.r.t the probe image. In line with recent research, we devise a metric learning model that employs a supervision based on local constraints. In particular, we leverage pairwise and triplet constraints for training a network capable of assigning a high degree of similarity to samples sharing the same identity, while keeping different identities distant in feature space. Eventually, we show how vehicle tracking can be exploited to automatically generate a weakly labelled dataset that can be used to train the deep network for the task of vehicle re-identification. Learning and evaluation is carried out on the NVIDIA AI city challenge videos. | URI: | http://hdl.handle.net/10553/55091 | ISBN: | 9781538661000 | ISSN: | 2160-7508 | DOI: | 10.1109/CVPRW.2018.00030 | Fuente: | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[ISSN 2160-7508],v. 2018-June (8575466), p. 166-171 |
Colección: | Actas de congresos |
Citas SCOPUSTM
32
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
19
actualizado el 17-nov-2024
Visitas
94
actualizado el 09-sep-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.