Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54978
Título: Ego-motion classification for body-worn videos
Autores/as: Meng, Zhaoyi
Sánchez, Javier 
Morel, Jean Michel
Bertozzi, Andrea L.
Brantingham, P. Jeffrey
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Fecha de publicación: 2018
Publicación seriada: Mathematics and Visualization 
Conferencia: International conference on Imaging, Vision and Learning Based on Optimization and PDEs, IVLOPDE 2016 
Resumen: Portable cameras record dynamic first-person video footage and these videos contain information on the motion of the individual to whom the camera is mounted, defined as ego. We address the task of discovering ego-motion from the video itself, without other external calibration information. We investigate the use of similarity transformations between successive video frames to extract signals reflecting ego-motions and their frequencies. We use novel graph-based unsupervised and semi-supervised learning algorithms to segment the video frames into different ego-motion categories. Our results show very accurate results on both choreographed test videos and ego-motion videos provided by the Los Angeles Police Department.
URI: http://hdl.handle.net/10553/54978
ISSN: 1612-3786
DOI: 10.1007/978-3-319-91274-5_10
Fuente: Tai XC., Bae E., Lysaker M. (eds) Imaging, Vision and Learning Based on Optimization and PDEs. IVLOPDE 2016. Mathematics and Visualization. Springer, Cham
Colección:Actas de congresos
miniatura
pdf
Adobe PDF (3,81 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.