Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54851
Título: | Age classification from facial images: Is frontalization necessary? | Autores/as: | Báez-Suárez, A. B. Nikou, C. Nolazco-Flores, J. A. Kakadiaris, I. A. |
Clasificación UNESCO: | 3314 Tecnología médica | Fecha de publicación: | 2016 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 12th International Symposium on Visual Computing (ISVC 2016) | Resumen: | In the majority of the methods proposed for age classification from facial images, the preprocessing steps consist of alignment and illumination correction followed by the extraction of features, which are forwarded to a classifier to estimate the age group of the person in the image. In this work, we argue that face frontalization, which is the correction of the pitch, yaw, and roll angles of the headpose in the 3D space, should be an integral part of any such algorithm as it unveils more discriminative features. Specifically, we propose a method for age classification which integrates a frontalization algorithm before feature extraction. Numerical experiments on the widely used FGnet Aging Database confirmed the importance of face frontalization achieving an average increment in accuracy of 4.43%. | URI: | http://hdl.handle.net/10553/54851 | ISBN: | 978-3-319-50834-4 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-50835-1_69 | Fuente: | Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science, v. 10072 LNCS, p. 769-778 |
Colección: | Capítulo de libro |
Citas SCOPUSTM
3
actualizado el 15-dic-2024
Visitas
104
actualizado el 04-may-2024
Descargas
131
actualizado el 04-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.