Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54851
Título: Age classification from facial images: Is frontalization necessary?
Autores/as: Báez-Suárez, A. B. 
Nikou, C.
Nolazco-Flores, J. A.
Kakadiaris, I. A.
Clasificación UNESCO: 3314 Tecnología médica
Fecha de publicación: 2016
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 12th International Symposium on Visual Computing (ISVC 2016) 
Resumen: In the majority of the methods proposed for age classification from facial images, the preprocessing steps consist of alignment and illumination correction followed by the extraction of features, which are forwarded to a classifier to estimate the age group of the person in the image. In this work, we argue that face frontalization, which is the correction of the pitch, yaw, and roll angles of the headpose in the 3D space, should be an integral part of any such algorithm as it unveils more discriminative features. Specifically, we propose a method for age classification which integrates a frontalization algorithm before feature extraction. Numerical experiments on the widely used FGnet Aging Database confirmed the importance of face frontalization achieving an average increment in accuracy of 4.43%.
URI: http://hdl.handle.net/10553/54851
ISBN: 978-3-319-50834-4
ISSN: 0302-9743
DOI: 10.1007/978-3-319-50835-1_69
Fuente: Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science, v. 10072 LNCS, p. 769-778
Colección:Capítulo de libro
miniatura
pdf
Adobe PDF (1,57 MB)
Vista completa

Citas SCOPUSTM   

3
actualizado el 15-dic-2024

Visitas

104
actualizado el 04-may-2024

Descargas

131
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.