Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54675
Título: | Convergence of longest edge n-section of triangles | Autores/as: | Suárez, Jose P. Moreno, Tania Abad, Pilar Plaza, Ángel |
Clasificación UNESCO: | 120603 Análisis de errores | Palabras clave: | Longest-edge Mesh refinement N-section Triangle partition Triangulation |
Fecha de publicación: | 2012 | Publicación seriada: | Lecture notes in engineering and computer science | Conferencia: | 2012 World Congress on Engineering, WCE 2012 | Resumen: | Let t be a triangle in R2. We find the Longest Edge (LE) of t, insert n−1 equally-space points in the LE and connect them to the opposite vertex. This yields the generation of n new sub-triangles whose parent is t. Now, continue this process iteratively. Proficient algorithms for mesh refinement using this method are known when n = 2, but less known when n = 3 and completely unknown when n 4. We prove that the LE n-section of triangles for n 4 of triangles produces a finite sequence of triangle meshes with guaranteed convergence of diameters. We give upper and lower bounds for the convergence speed in terms of diameter reduction. Then we fill the gap in the analysis of the diameters convergence for general Longest Edge based subdivision. In addition, we give a numerical study for the case of n = 4, the so-called LE quatersection, evidencing its utility in adaptive mesh refinement. | URI: | http://hdl.handle.net/10553/54675 | ISBN: | 9789881925213 978-988-19252-1-3 |
ISSN: | 2078-0958 | Fuente: | World Congress on Engineering, WCE 2012; Imperial College LondonLondon; United Kingdom; 4 July 2012 through 6 July 2012 [ISSN 2078-0958], v. 2198, p. 869-873 |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.