Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/54675
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suárez, Jose P. | en_US |
dc.contributor.author | Moreno, Tania | en_US |
dc.contributor.author | Abad, Pilar | en_US |
dc.contributor.author | Plaza, Ángel | en_US |
dc.date.accessioned | 2019-02-18T12:25:54Z | - |
dc.date.available | 2019-02-18T12:25:54Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.isbn | 9789881925213 | - |
dc.identifier.isbn | 978-988-19252-1-3 | - |
dc.identifier.issn | 2078-0958 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/54675 | - |
dc.description.abstract | Let t be a triangle in R2. We find the Longest Edge (LE) of t, insert n−1 equally-space points in the LE and connect them to the opposite vertex. This yields the generation of n new sub-triangles whose parent is t. Now, continue this process iteratively. Proficient algorithms for mesh refinement using this method are known when n = 2, but less known when n = 3 and completely unknown when n 4. We prove that the LE n-section of triangles for n 4 of triangles produces a finite sequence of triangle meshes with guaranteed convergence of diameters. We give upper and lower bounds for the convergence speed in terms of diameter reduction. Then we fill the gap in the analysis of the diameters convergence for general Longest Edge based subdivision. In addition, we give a numerical study for the case of n = 4, the so-called LE quatersection, evidencing its utility in adaptive mesh refinement. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Lecture notes in engineering and computer science | en_US |
dc.source | World Congress on Engineering, WCE 2012; Imperial College LondonLondon; United Kingdom; 4 July 2012 through 6 July 2012 [ISSN 2078-0958], v. 2198, p. 869-873 | en_US |
dc.subject | 120603 Análisis de errores | en_US |
dc.subject.other | Longest-edge | en_US |
dc.subject.other | Mesh refinement | en_US |
dc.subject.other | N-section | en_US |
dc.subject.other | Triangle partition | en_US |
dc.subject.other | Triangulation | en_US |
dc.title | Convergence of longest edge n-section of triangles | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 2012 World Congress on Engineering, WCE 2012 | |
dc.identifier.scopus | 84880711264 | - |
dc.contributor.authorscopusid | 7202040282 | - |
dc.contributor.authorscopusid | 55213116800 | - |
dc.contributor.authorscopusid | 57196535626 | - |
dc.contributor.authorscopusid | 7006613647 | - |
dc.identifier.eissn | 2078-0966 | - |
dc.description.lastpage | 873 | - |
dc.description.firstpage | 869 | - |
dc.relation.volume | 2198 | - |
dc.investigacion | Ciencias | en_US |
dc.type2 | Actas de congresos | en_US |
dc.date.coverdate | Enero 2012 | |
dc.identifier.conferenceid | events121467 | |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 04-07-2012 | - |
crisitem.event.eventsenddate | 06-07-2012 | - |
crisitem.author.dept | GIR IUMA: Matemáticas, Gráficos y Computación | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Cartografía y Expresión Gráfica en La Ingeniería | - |
crisitem.author.dept | Departamento de Cartografía y Expresión Gráfica en La Ingeniería | - |
crisitem.author.dept | GIR IUMA: Matemáticas, Gráficos y Computación | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.orcid | 0000-0001-8140-9008 | - |
crisitem.author.orcid | 0000-0002-5077-6531 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Suárez Rivero, José Pablo | - |
crisitem.author.fullName | Abad Real, María Pilar | - |
crisitem.author.fullName | Plaza De La Hoz, Ángel | - |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.