Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54675
Título: Convergence of longest edge n-section of triangles
Autores/as: Suárez, Jose P. 
Moreno, Tania
Abad, Pilar 
Plaza, Ángel 
Clasificación UNESCO: 120603 Análisis de errores
Palabras clave: Longest-edge
Mesh refinement
N-section
Triangle partition
Triangulation
Fecha de publicación: 2012
Publicación seriada: Lecture notes in engineering and computer science 
Conferencia: 2012 World Congress on Engineering, WCE 2012 
Resumen: Let t be a triangle in R2. We find the Longest Edge (LE) of t, insert n−1 equally-space points in the LE and connect them to the opposite vertex. This yields the generation of n new sub-triangles whose parent is t. Now, continue this process iteratively. Proficient algorithms for mesh refinement using this method are known when n = 2, but less known when n = 3 and completely unknown when n 4. We prove that the LE n-section of triangles for n 4 of triangles produces a finite sequence of triangle meshes with guaranteed convergence of diameters. We give upper and lower bounds for the convergence speed in terms of diameter reduction. Then we fill the gap in the analysis of the diameters convergence for general Longest Edge based subdivision. In addition, we give a numerical study for the case of n = 4, the so-called LE quatersection, evidencing its utility in adaptive mesh refinement.
URI: http://hdl.handle.net/10553/54675
ISBN: 9789881925213
978-988-19252-1-3
ISSN: 2078-0958
Fuente: World Congress on Engineering, WCE 2012; Imperial College LondonLondon; United Kingdom; 4 July 2012 through 6 July 2012 [ISSN 2078-0958], v. 2198, p. 869-873
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

35
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.