Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54648
Título: | SNEOM: a sanger network based extended over-sampling method. Application to imbalanced biomedical datasets | Autores/as: | Martínez-García, José Manuel Suárez-Araujo, Carmen Paz Báez, Patricio García |
Clasificación UNESCO: | 120304 Inteligencia artificial 32 Ciencias médicas |
Palabras clave: | Neural-Networks | Fecha de publicación: | 2012 | Editor/a: | 0302-9743 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 19th International Conference on Neural Information Processing (ICONIP) 19th International Conference on Neural Information Processing, ICONIP 2012 |
Resumen: | In this work we introduce a novel over-sampling method to face the problem of imbalanced classes’ classification. This method, based on the Sanger neural network, is capable of dealing with high-dimensional datasets. Moreover, it extends the capability of over-sampling methods and allows generating samples from both minority and majority classes. We have validated it in real medical applications where the involved datasets present an un-even representation among the classes and it has been obtained high sensitivities identifying minority classes. Therefore, by means of this method it is possible to accomplish the design of systems for the medical diagnosis with a high reliability. | URI: | http://hdl.handle.net/10553/54648 | ISBN: | 9783642344770 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-34478-7_71 | Fuente: | Huang T., Zeng Z., Li C., Leung C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7666. Springer, Berlin, Heidelberg |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.