Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54648
Título: SNEOM: a sanger network based extended over-sampling method. Application to imbalanced biomedical datasets
Autores/as: Martínez-García, José Manuel
Suárez-Araujo, Carmen Paz 
Báez, Patricio García
Clasificación UNESCO: 120304 Inteligencia artificial
32 Ciencias médicas
Palabras clave: Neural-Networks
Fecha de publicación: 2012
Editor/a: 0302-9743
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 19th International Conference on Neural Information Processing (ICONIP) 
19th International Conference on Neural Information Processing, ICONIP 2012 
Resumen: In this work we introduce a novel over-sampling method to face the problem of imbalanced classes’ classification. This method, based on the Sanger neural network, is capable of dealing with high-dimensional datasets. Moreover, it extends the capability of over-sampling methods and allows generating samples from both minority and majority classes. We have validated it in real medical applications where the involved datasets present an un-even representation among the classes and it has been obtained high sensitivities identifying minority classes. Therefore, by means of this method it is possible to accomplish the design of systems for the medical diagnosis with a high reliability.
URI: http://hdl.handle.net/10553/54648
ISBN: 9783642344770
ISSN: 0302-9743
DOI: 10.1007/978-3-642-34478-7_71
Fuente: Huang T., Zeng Z., Li C., Leung C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7666. Springer, Berlin, Heidelberg
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

4
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 25-feb-2024

Visitas

96
actualizado el 23-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.