Please use this identifier to cite or link to this item:
Title: A local refinement algorithm for the longest-edge trisection of triangle meshes
Authors: Plaza, Ángel 
Falcón, Sergio 
Suárez, José P. 
Abad, Pilar 
UNESCO Clasification: 120601 Construcción de algoritmos
Keywords: Adaptive Refinement
Quality Improvement
Side, et al
Issue Date: 2012
Journal: Mathematics and Computers in Simulation 
Abstract: In this paper we present a local refinement algorithm based on the longest-edge trisection of triangles. Local trisection patterns are used to generate a conforming triangulation, depending on the number of non-conforming nodes per edge presented. We describe the algorithm and provide a study of the efficiency (cost analysis) of the triangulation refinement problem. The algorithm presented, and its associated triangle partition, afford a valid strategy to refine triangular meshes. Some numerical studies are analysed together with examples of applications in the field of mesh refinement.
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2011.07.003
Source: Mathematics and Computers in Simulation [ISSN 0378-4754], v. 82, p. 2971-2981
Appears in Collections:Artículos
Show full item record

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.