Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54644
Title: A local refinement algorithm for the longest-edge trisection of triangle meshes
Authors: Plaza, Ángel 
Falcón, Sergio 
Suárez, José P. 
Abad, Pilar 
UNESCO Clasification: 120601 Construcción de algoritmos
Keywords: Adaptive Refinement
Quality Improvement
Partition
Bisection
Side, et al
Issue Date: 2012
Journal: Mathematics and Computers in Simulation 
Abstract: In this paper we present a local refinement algorithm based on the longest-edge trisection of triangles. Local trisection patterns are used to generate a conforming triangulation, depending on the number of non-conforming nodes per edge presented. We describe the algorithm and provide a study of the efficiency (cost analysis) of the triangulation refinement problem. The algorithm presented, and its associated triangle partition, afford a valid strategy to refine triangular meshes. Some numerical studies are analysed together with examples of applications in the field of mesh refinement.
URI: http://hdl.handle.net/10553/54644
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2011.07.003
Source: Mathematics and Computers in Simulation [ISSN 0378-4754], v. 82, p. 2971-2981
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

6
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 24, 2024

Page view(s)

71
checked on Feb 24, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.