Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54625
Campo DC Valoridioma
dc.contributor.authorMéndez, J.en_US
dc.contributor.authorGreiner, D.en_US
dc.date.accessioned2019-02-18T12:02:41Z-
dc.date.available2019-02-18T12:02:41Z-
dc.date.issued2006en_US
dc.identifier.isbn1905088094
dc.identifier.isbn9781905088096
dc.identifier.urihttp://hdl.handle.net/10553/54625-
dc.description.abstractThis paper shows a method to compute the chord and twist distributions in wind power blades. The distributions are computed to maximize the mean expected power depending on the Weibull wind distribution at a specific site. This approach avoids assumptions about optimal attack angle related to the ratio between the lift to drag coefficients. To optimize chord and twist distributions, an efficient implementation of the Blade-Element and Momentum theory is used. In the implementation, the sophistication is dismiss to reduce computational cost. The time required to evaluate the forces in a typical turbine is in the order of milliseconds, which allows massive evaluation of trial turbines. The implementation is validated by comparing power prediction with the experimental data of the Risø test turbine. High quality in results is obtained until the stall zone, about wind speed of 13m/s proximately. Predictions are used to compute the mean power that is used as the fitness function in a genetic algorithm. An application is presented to optimize the blade of this test turbine for a specified wind distribution. © 2006 Civil-Comp Press.
dc.languageengen_US
dc.relation.ispartofProceedings of the 5th International Conference on Engineering Computational Technologyen_US
dc.sourceProceedings of the 5th International Conference on Engineering Computational Technologyen_US
dc.titleWind blade chord and twist angle optimization using genetic algorithmsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference5th International Conference on Engineering Computational Technology, ECT 2006
dc.identifier.scopus84858629057-
dc.contributor.authorscopusid55377382200-
dc.contributor.authorscopusid56268125800-
dc.type2Actas de congresosen_US
dc.date.coverdateDiciembre 2006
dc.identifier.conferenceidevents121431
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-4132-7144-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGreiner Sánchez, David Juan-
crisitem.event.eventsstartdate12-09-2006-
crisitem.event.eventsenddate15-09-2006-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

36
actualizado el 24-nov-2024

Visitas

78
actualizado el 18-mar-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.