Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54625
DC FieldValueLanguage
dc.contributor.authorMéndez, J.en_US
dc.contributor.authorGreiner, D.en_US
dc.date.accessioned2019-02-18T12:02:41Z-
dc.date.available2019-02-18T12:02:41Z-
dc.date.issued2006en_US
dc.identifier.isbn1905088094
dc.identifier.isbn9781905088096
dc.identifier.urihttp://hdl.handle.net/10553/54625-
dc.description.abstractThis paper shows a method to compute the chord and twist distributions in wind power blades. The distributions are computed to maximize the mean expected power depending on the Weibull wind distribution at a specific site. This approach avoids assumptions about optimal attack angle related to the ratio between the lift to drag coefficients. To optimize chord and twist distributions, an efficient implementation of the Blade-Element and Momentum theory is used. In the implementation, the sophistication is dismiss to reduce computational cost. The time required to evaluate the forces in a typical turbine is in the order of milliseconds, which allows massive evaluation of trial turbines. The implementation is validated by comparing power prediction with the experimental data of the Risø test turbine. High quality in results is obtained until the stall zone, about wind speed of 13m/s proximately. Predictions are used to compute the mean power that is used as the fitness function in a genetic algorithm. An application is presented to optimize the blade of this test turbine for a specified wind distribution. © 2006 Civil-Comp Press.
dc.languageengen_US
dc.relation.ispartofProceedings of the 5th International Conference on Engineering Computational Technologyen_US
dc.sourceProceedings of the 5th International Conference on Engineering Computational Technologyen_US
dc.titleWind blade chord and twist angle optimization using genetic algorithmsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference5th International Conference on Engineering Computational Technology, ECT 2006
dc.identifier.scopus84858629057-
dc.contributor.authorscopusid55377382200-
dc.contributor.authorscopusid56268125800-
dc.type2Actas de congresosen_US
dc.date.coverdateDiciembre 2006
dc.identifier.conferenceidevents121431
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate12-09-2006-
crisitem.event.eventsenddate15-09-2006-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-4132-7144-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGreiner Sánchez, David Juan-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

36
checked on Nov 17, 2024

Page view(s)

78
checked on Mar 18, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.