Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54496
DC FieldValueLanguage
dc.contributor.authorMéndez, Máximoen_US
dc.contributor.authorGalván, Blasen_US
dc.contributor.authorSalazar, Danielen_US
dc.contributor.authorGreiner, Daviden_US
dc.contributor.otherSalazar, Daniel-
dc.contributor.otherGreiner, David-
dc.date.accessioned2019-02-18T11:10:39Z-
dc.date.available2019-02-18T11:10:39Z-
dc.date.issued2009en_US
dc.identifier.isbn978-3-540-85645-0en_US
dc.identifier.issn0075-8442en_US
dc.identifier.urihttp://hdl.handle.net/10553/54496-
dc.description.abstractThe so called second generation of Multi-Objective Evolutionary Algorithms (MOEAs) like NSGA-II, are highly efficient and obtain Pareto optimal fronts characterized mainly by a wider spread and visually distributed fronts. The subjacent idea is to provide the decision-makers (DM) with the most representative set of alternatives in terms of objective values, reserving the articulation of preferences to an a posteriori stage. Nevertheless, in many real discrete problems the number of solutions that belong the Pareto front is unknown and if the specified size of the non-dominated population in the MOEA is less than the number of solutions of the problem, the found front will be incomplete for a posteriori Making Decision. A possible strategy to overcome this difficulty is to promote those solutions placed in the region of interest while neglecting the others during the search, according to some DM's preferences. We propose TOPSISGA, that merges the second generation of MOEAs (we use NSGA-II) with the well known multiple criteria decision making technique TOPSIS whose main principle is to identify as preferred solutions those ones with the shortest distance to the positive ideal solution and the longest distance from the negative ideal solution. The method induces an ordered list of alternatives in accordance to the DM's preferences based on Similarity to the ideal point.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Economics and Mathematical Systemsen_US
dc.sourceMultiobjective Programming and Goal Programming. Lecture Notes in Economics and Mathematical Systems, v. 618 LNE, p. 145-154en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject12 Matemáticasen_US
dc.subject.other0–1 Multi-objective knapsack problem (0–1MOKP)en_US
dc.subject.otherMulti-objective evolutionary algorithmen_US
dc.subject.otherMultiple criteria decision makingen_US
dc.subject.otherSafety systems design optimisationen_US
dc.subject.otherPreferencesen_US
dc.subject.otherTOPSISen_US
dc.titleMultiple-objective genetic algorithm using the multiple criteria decision making method TOPSISen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference7th Multi-Objective Programming and Goal Programming Conferenceen_US
dc.identifier.doi10.1007/978-3-540-85646-7_14en_US
dc.identifier.scopus60649089391-
dc.identifier.isi000267800600014-
dc.contributor.authorscopusid23474473600-
dc.contributor.authorscopusid8704390300-
dc.contributor.authorscopusid56240751500-
dc.contributor.authorscopusid56268125800-
dc.description.lastpage154en_US
dc.description.firstpage145en_US
dc.relation.volume618en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.wosWOS:000267800600014-
dc.contributor.daisngid34950914-
dc.contributor.daisngid6670177-
dc.contributor.daisngid1678121-
dc.contributor.daisngid1400577-
dc.contributor.daisngid1559703-
dc.identifier.investigatorRIDB-2298-2010-
dc.identifier.investigatorRIDN-8557-2013-
dc.description.numberofpages10en_US
dc.identifier.eisbn978-3-540-85646-7-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mendez, M-
dc.contributor.wosstandardWOS:Galvan, B-
dc.contributor.wosstandardWOS:Salazar, D-
dc.contributor.wosstandardWOS:Greiner, D-
dc.date.coverdateFebrero 2009en_US
dc.identifier.supplement0075-8442-
dc.identifier.supplement0075-8442-
dc.identifier.conferenceidevents120678-
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate12-06-2006-
crisitem.event.eventsenddate14-06-2006-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-7133-7108-
crisitem.author.orcid0000-0002-4132-7144-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMéndez Babey, Máximo-
crisitem.author.fullNameGalvan Gonzalez,Blas Jose-
crisitem.author.fullNameGreiner Sánchez, David Juan-
Appears in Collections:Actas de congresos
Adobe PDF (157,23 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.