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The so called second generation of Multi-Objective Evolutionary Algorithms
(MOEAs) like NSGA-II, are highly efficient and obtain Pareto optimal fronts
characterized mainly by a wider spread and visually distributed fronts. The
subjacent idea is to provide the decision-makers (DM) with the most represen-
tative set of alternatives in terms of objective values, reserving the articula-
tion of preferences to an a posteriori stage. Nevertheless, in many real discrete
problems the number of solutions that belong the Pareto front is unknown and
if the specified size of the non-dominated population in the MOEA is less than
the number of solutions of the problem, the found front will be incomplete for
a posteriori Making Decision. A possible strategy to overcome this difficulty
is to promote those solutions placed in the region of interest while neglecting
the others during the search, according to some DM’s preferences. We propose
TOPSISGA, that merges the second generation of MOEAs (we use NSGA-
II) with the well known multiple criteria decision making technique TOPSIS
whose main principle is to identify as preferred solutions those ones with the
shortest distance to the positive ideal solution and the longest distance from
the negative ideal solution. The method induces an ordered list of alternatives
in accordance to the DM’s preferences based on Similarity to the ideal point.

1 Introduction

Many well known and extendedly used Multi-Objective Evolutionary Algo-
rithms (MOEAs) like NSGA-II [2] pursue to reach the efficient frontier and
to sample it by a wide and even distributed set of non-dominated solutions.
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Subsequently, the decision maker (DM) chooses one solution in accordance
with his/her preferences. Nevertheless, this approach does not always turn
out the most appropriate. For instance, in many real discrete problems, if
the efficient set is numerous and the size of the non-dominated population is
limited, the MOEA cannot contain the whole set of solutions, compelling the
DM to lose potentially attractive alternatives. In order to solve the above-
mentioned disadvantage, a possible strategy is to concentrate the search in a
smaller set of Pareto optimal solutions, according to some DM’s preferences.
The incorporation of preferences into a MOEA is not new [1, 3]. Nonetheless,
to the best of our knowledge there is no previous attempt at incorporating
TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution)
method [6] into a MOEA. In that sense we propose TOPSISGA, combining
the concept of TOPSIS (minimizing the distance to the ideal solution while
maximizing the distance to the negative solution) with MOEA methodologies
(we use NSGA-II). With TOPSIS, a DM needs input his/her preferences or
weights that are used in the proposed method for guiding the search towards
the region of interest. The method induces an ordering of the solutions based
on Similarity to the ideal point.

2 TOPSIS method

The TOPSIS method was developed by Hwang and Yoon [6] for solving
MCDM problems with a finite number of solutions. The TOPSIS method
establishes that the chosen solution should have the shortest distance to the
positive ideal solution (I+) and the longest distance from the negative ideal
solution (I−), where the distances are calculated with a particular value of p

(1≤ p ≤ ∞) of the Minkowski’s metrics Lp =
{

k∑
i=1

wp
i |fi(−→x )− f∗i |

p

}p

. Here,

f∗i (i ∈ {1, 2, ..., n}) is a vector whose coordinates corresponds to the coordi-
nates of a reference point. With the TOPSIS method, that point is I+ or I−.
The TOPSIS concept is rational and comprehensible. Since the Minkowski’s
metrics are weighted distances, the order strongly depends on the weights the
DM assigns to each objective according to their preferences. The TOPSIS
procedure consists of:

Step 1. Obtain a decision matrix, where a set of alternatives (solutions)
A=(aj , j=1,2,...,k) is compared with respect to a set of criterion functions
(objective functions) C=(ci, i=1,2,...,n), an element xij of the matrix, is
a value indicating the performance rating of jth alternative with regard
to the criterion ci.

Step 2. Calculate the normalized decision matrix according to:
rij = xij√

k∑
j=1

x2
ij



Multiple-Objective Genetic Algorithm Using the MCDM Method TOPSIS 3

Step 3. Calculate the weighted normalized values as:
vij = wirij

wi is the weight of the ith criterion set by the DM and
n∑

i=1

wi = 1.

Step 4. Determine the positive ideal solution I+ and the negative ideal solu-
tion I− as:
I+ = (maxj v1j ,maxj v2j , ...,maxj vnj) = (v+

1 , v+
2 , ..., v+

n ), see figure 1(a)
I− = (minj v1j ,minj v2j , ...,minj vnj) = (v−1 , v−2 , ..., v−n ), see figure 1(a).

Fig. 1. (a) Positive and negative solutions, (b) TOPSIS distances.

Step 5. Calculate the Euclidean distances for each alternative from the posi-
tive ideal solution as:

d+
j =

√
n∑

i=1

(vij − v+
i )2 j=1,2,...k.

Similarly, the Euclidean distances from the negative ideal solution is given
as:

d−j =

√
n∑

i=1

(vij − v−i )2 j=1,2,...k.

Step 6. Calculate the relative closeness to the positive ideal solution (rating
of Similarity to the ideal positive ) as:

D+
j =

d−
j

d+
j

+d−
j

D+
j value [0,1].

Step 7. Sort the solutions in terms of similarity. The final (increasingly la-
belled) order is obtained sorting the set of alternatives decreasingly in
terms of D+

j , i.e. from the most similarity to the less. Figure 1(b) shows
the basic principle, aj is closer to the positive ideal and farther from the
negative ideal than az because d+

j < d+
z and d−j > d−z ; D+

j > D+
z and

the alternative aj is better than az.



4 M. Méndez, B. Galván, D. Salazar, and D. Greiner

3 Proposed TOPSISGA method

The present approach has a similar structure to other MOEAs, and it in-
troduces two modifications to the original formulation of NSGA-II [2]: First
the size of population and the archive of non-dominated solutions can differ;
Second, TOPSISGA varies the crowding operator of NSGA-II [2] substitut-
ing the crowding distances with the relative distances D+

j . We assume two
populations: Pt, which represents the current population (size M) during gen-
eration t; and Pt

A, which consists of non-dominated solutions (archive size
N). Initially, M individuals are randomly generated and the archive of non-
dominated solutions is set empty. At each generation t, a combined population
Rt = P t + P t

A (size M+N) is formed (since all previous population members
are included in Rt elitism is ensured). Then Rt is sorted based on dominance
(figures 2(a) and 2(b)). The following population Pt+1

A is established with the
non-dominated solutions of Rt starting with the set (F1) of rank 1 followed
by the set (F2) with rank 2 until the last set (FL) of rank L. If the count of
solutions in all sets from F1 to FL is larger than the new population Pt+1

A

(size N), we sort the last set FL using the Similarity (D+
j in ascending order)

(figures 2(a) and 2(c)). Afterwards a reproductive selection of individuals ran-
domly selected from Pt+1

A is accomplished using a binary tournament and a
mating pool (MP) is filled up, at this stage M new individuals are generated
by applying recombination operators on MP.

Fig. 2. Rank (a)(b) and similarity (c) concepts used by TOPSISGA.

Notice, that the selection operator uses a binary tournament and the criterion
is: 1) non-dominated rank -smaller rank- 2) similarity -bigger similarity-.

4 Experimental results

4.1 The 0-1 multiobjective knapsack problem

In this section the TOPSISGA method is applied to two problems. The first is
the 0-1 multiobjective knapsack problem (0-1 MOKP), which has been widely
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studied in the multiobjective community. The second application example is a
real world engineering problem in the domain of reliability. Independently of
the test problem the Rt population (size M+N) was set to 200 individuals, the
crossover probability to 0.8, the mutation rate to 0.01, the p value to 2 and
the archive size of non-dominated solutions was changed progressively follow-
ing the sequence N=10,20,30,40,50,100 individuals. The maximum generation
number (G) for the 0-1 MOKP problem was G=500 and for the reliability
problem was G=50, G=100 and G=250.

Description

The 0-1 MOKP problem is well known and has been the subject of in-depth
studies in the multiobjective domain. It is easy to implement it, but because of
its NP-hard nature, it becomes a very difficult problem to be solved in practice.
The 0-1 MOKP can be used to model many real problems and it possesses
a high number of applications in finance particularly. Various evolutionary
algorithms have been used to solve the 0-1 MOKP, e.g. [7, 8].
The 0-1 MOKP consists of to find a subset of items (weights and profits are
associated to each item) maximizing a multiobjective function -expressed as
a function of the profit values- and considering the constraints of capacity of
each knapsack (maximum weight). The 0-1 MOKP can be defined formally
by (1):


max. fi(x) =

m∑
j=1

cijxj i = 1, 2, ..., n

Such that
m∑

j=1

wijxj ≤ bi xjε{0, 1}
(1)

where:

m = number of items
xj = a decision variable
n = number of objectives
cij = profit of item j according to knapsack i
wij = weight of item j according to knapsack i
bi = capacity of knapsack i

The data adopted have been: two objectives and 100 items, the true Pareto
frontier is known (figure 3), for more details see:
http://www.tik.ee.ethz.ch/%7ezitzler/testdata.html#testproblems.

Results

Figure 4 shows the results with TOPSISGA and NSGAII (for G=500 and
N=10). The labels correspond to the TOPSIS classification of the final front
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Fig. 3. True Pareto frontier knapsack problem.

when the weights are w1 = w2 = 0.5. Notice also that, TOPSISGA focuses
upon a particular region of the efficient frontier while NSGA-II finds an even
final set.

Fig. 4. Non-dominated front found by TOPSISGA and NSGAII.

TOPSISGA was compared with NSGA-II based on the C metric [10] (the
lower the better), using the efficient frontier as a reference set R. Table 1
reports the percentage (average after ten runs) of the final outcomes (labelled
A) dominated by the true Pareto frontier. Figure 5 shows graphically the
results of table 1.

Table 1. Metric C(R,A) values for 500 generations

Method N=10 N=20 N=30 N=40 N=50 N=100

TOPSISGA 74 74.5 86.27 87.65 84.5 90.95
NSGA-II 99 86 86.33 83.97 87.68 97.83
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Fig. 5. Graphic view of table 1.

4.2 Safety systems design optimisation

Description

As an application example we will use here a well known dependability prob-
lem, the design optimization of a Safety System (SS) -as practical test we use
the Containment Spray Injection System (CSIS) of a Nuclear Power Plant
(NPP)-. The problem is combinatorial in nature and NP-hard and it has been
widely studied before [4, 5]. In figure 6(a) the CSIS layout design is depicted
and table 2 shows the Unavailability and Cost of the different market avail-
able components (valves and pumps) for the system, being the optimization
purpose to obtain the best design. For each combination of pumps and valves
the system unavailability and the system cost are computed, the former using
a fault tree with design alternatives and the later using a single aggregating
formula. Both objectives are in conflict so a multiobjective optimisation is
the appropriate methodology. When any number of objective function eval-
uations can be made during the optimization, the true Pareto front of non
dominated solutions can be obtained using ad hoc multiobjective methods
like the NSGA-II [2]. Figure 6(b) shows the true Pareto frontier [5].

Fig. 6. (a) CSIS system for NPP, (b) The true Pareto frontier SS problem.
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Table 2. Component models available on the market.

Model Valves Valves Valves Pumps
1,4,6,9 2,3,7,8 5,10 a,b,c,d

Mod. 1 U=2,9E-03 U=3,0E-03 U=5,0E-04 U=3,5E-03
C=50 C=65 C=37 C=90

Mod. 2 U=8,7E-03 U=1,0E-03 U=6,0E-04 U=3,8E-03
U=35 C=70 C=35 C=85

Mod. 3 U=4,0E-04
C=60

Results

Figures 7(a) and 7(b) show the results when the unavailability and the cost
are weighted 0.5, 0.5 and 0.8, 0.2 respectively (for G=100 and N=10). The
labels correspond to the TOPSIS classification of the final front.

Fig. 7. Non-dominated front found by TOPSISGA.

Notice that the final ordering changes with the weights as expected, providing
the DM with a final pre-order according to their preferences. Notice also that,
while NSGA-II finds an even final set (figure 8 -for G=100 and N=10-), the
TOPSISGA focuses upon a particular region of the efficient frontier (figures
7(a) and 7(b)) and the final result is far different from the one reached by
NSGA-II despite of the fact that the objectives were equally weighted. On the
other hand, it is evident that it is impossible to obtain a similar classification
to the one obtained by TOPSISGA from the final set presented by NSGA-II
and vice versa. It raises the question of where is the right moment to introduce
preferences and under what criterion?
Finally, the proposed approach was compared with NSGA-II based on the C
metric [10], using the efficient frontier as a reference set R. Table 3 reports
the percentage (average after ten runs) of the final outcomes (labelled A)
dominated by the true Pareto frontier. Figures 9(a) and 9(b) show graphically
the results of table 3 for 50 and 100 generations.
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Fig. 8. Non-dominated frontier found by NSGA-II.

Table 3. Metric C(R,A) values for 50, 100 and 250 generations.

Method G N=10 N=20 N=30 N=40 N=50 N=100

TOPSISGA 50 21 10 10.33 8.25 6.38 8.15
NSGA-II 46 29.5 10.33 7.25 7.93 9.45

TOPSISGA 100 18 9.5 9.66 6.5 6.97 4.58
NSGA-II 47 28.55 9.66 4.25 6.96 4.97

TOPSISGA 250 18 6 7 4.5 3.31 2.7
NSGA-II 34 23 4.7 4 4.6 2.47

Fig. 9. Graphic view of table 3: (a) 50G, (b) 100G.

5 Conclusions

In many real discrete problems the number of solutions that belong to the
Pareto front is unknown. If the specified size of the non-dominated population
in the MOEA is less than the number of solutions of the problem, the found
front will be incomplete for a posteriori Making Decision. In this work we
introduce the MOEA structure TOPSISGA that combines the second genera-
tion of MOEAs (we use NSGA-II) with the multiple criteria decision making
technique TOPSIS. The conducted experiments show that the proportion of
efficient frontier reached by the algorithms is larger using TOPSISGA when
the archive size of non-dominated solutions is small, but this difference seems
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to disappear when the archive size of non-dominated solutions increases. Be-
sides, TOPSISGA focuses the search on the region of interest, giving an order
list of alternatives in accordance to the DM’s preferences. Nevertheless, it
could be convenient to find a balance between the spread over the whole front
produced by NSGA-II with the identification and the exploitation of the zone
of interest realised by TOPSISGA. Kwangsun Yoon [9] measures the credi-
bility of dp distance function and obtains: the distance function becomes less
specific or less credible as parameter p increases. He recommends the use of d1

for obtaining the most credible compromise solution from the purely mathe-
matical viewpoint. In TOPSISGA we use the p=2 metric, its influences hasn’t
been checked so far, it is left for future research.
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