Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54366
Title: Non-degeneracy study of the 8-tetrahedra longest-edge partition
Authors: Plaza, Angel 
Padrón, Miguel A. 
Suárez, José P. 
UNESCO Clasification: 120601 Construcción de algoritmos
Keywords: Mesh quality
Degeneracy
8-tetrahedra longest-edge partition
Issue Date: 2005
Journal: Applied Numerical Mathematics 
Abstract: In this paper we show empirical evidence on the non-degeneracy property of the tetrahedral meshes obtained by iterative application of the 8-tetrahedra longest-edge (8T-LE) partition. The 8T-LE partition of an initial tetrahedron t yields an infinite sequence of tetrahedral meshes τ1={t},τ2={ti2},τ3={ti3},… . We give numerical experiments showing that for a standard shape measure introduced by Liu and Joe (η), the non-degeneracy convergence to a fixed positive value is guaranteed, that is, for any tetrahedron tin in τn, n⩾1, η(tin)⩾cη(t) where c is a positive constant independent of i and n. Based on our experiments, estimates of c are provided.
URI: http://hdl.handle.net/10553/54366
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2004.12.003
Source: Applied Numerical Mathematics [ISSN 0168-9274], v. 55, p. 458-472
Appears in Collections:Actas de congresos
Show full item record

SCOPUSTM   
Citations

15
checked on Dec 15, 2024

WEB OF SCIENCETM
Citations

12
checked on Dec 15, 2024

Page view(s)

86
checked on Oct 12, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.