Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/53647
Título: Automatic initialization for body tracking: using appearance to learn a model for tracking human upper body motions
Autores/as: Schmidt, Joachim
Castrillon-Santana, Modesto 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Human robot interaction
Face detection
Model acquisition
Automatic initialization
Human body tracking
Fecha de publicación: 2008
Proyectos: Tecnicas Para El Robustecimiento de Procesos en Vision Artificial Para la Interaccion 
Conferencia: Proceedings of the Third International Conference on Computer Vision Theory and Applications (VISAPP 2008) 
Resumen: Social robots require the ability to communicate and recognize the intention of a human interaction partner. Humans commonly make use of gestures for interactive purposes. For a social robot, recognition of gestures is therefore a necessary skill. As a common intermediate step, the pose of an individual is tracked over time making use of a body model. The acquisition of a suitable body model, i.e. self-starting the tracker, however, is a complex and challenging task. This paper presents an approach to facilitate the acquisition of the body model during interaction. Taking advantage of a robust face detection algorithm provides the opportunity for automatic and markerless acquisition of a 3D body model using a monocular color camera. For the given human robot interaction scenario, a prototype has been developed for a single user configuration. It provides automatic initialization and failure recovery of a 3D body tracker based on head and hand detection information, delivering promising results.
URI: http://hdl.handle.net/10553/53647
ISBN: 978-989-8111-21-0
DOI: 10.5220/0001071005350542
Fuente: Visapp 2008: Proceedings Of The Third International Conference On Computer Vision Theory And Applications, Vol 2, p. 535-542
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 24-nov-2024

Visitas

62
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.