Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/53647
Título: | Automatic initialization for body tracking: using appearance to learn a model for tracking human upper body motions | Autores/as: | Schmidt, Joachim Castrillon-Santana, Modesto |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Human robot interaction Face detection Model acquisition Automatic initialization Human body tracking |
Fecha de publicación: | 2008 | Proyectos: | Tecnicas Para El Robustecimiento de Procesos en Vision Artificial Para la Interaccion | Conferencia: | Proceedings of the Third International Conference on Computer Vision Theory and Applications (VISAPP 2008) | Resumen: | Social robots require the ability to communicate and recognize the intention of a human interaction partner. Humans commonly make use of gestures for interactive purposes. For a social robot, recognition of gestures is therefore a necessary skill. As a common intermediate step, the pose of an individual is tracked over time making use of a body model. The acquisition of a suitable body model, i.e. self-starting the tracker, however, is a complex and challenging task. This paper presents an approach to facilitate the acquisition of the body model during interaction. Taking advantage of a robust face detection algorithm provides the opportunity for automatic and markerless acquisition of a 3D body model using a monocular color camera. For the given human robot interaction scenario, a prototype has been developed for a single user configuration. It provides automatic initialization and failure recovery of a 3D body tracker based on head and hand detection information, delivering promising results. | URI: | http://hdl.handle.net/10553/53647 | ISBN: | 978-989-8111-21-0 | DOI: | 10.5220/0001071005350542 | Fuente: | Visapp 2008: Proceedings Of The Third International Conference On Computer Vision Theory And Applications, Vol 2, p. 535-542 |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Visitas
62
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.