Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52599
Campo DC Valoridioma
dc.contributor.authorZamuda, Alešen_US
dc.contributor.authorHernández Sosa, José Danielen_US
dc.contributor.authorAdler, Leonharden_US
dc.date.accessioned2018-12-04T15:51:55Z-
dc.date.available2018-12-04T15:51:55Z-
dc.date.issued2016en_US
dc.identifier.issn1568-4946en_US
dc.identifier.urihttp://hdl.handle.net/10553/52599-
dc.description.abstractThis paper presents an approach for tackling constrained underwater glider path planning (UGPP), where the feasible path area is defined as a corridor around the border of an ocean eddy. The objective of the glider here is to sample the oceanographic variables more efficiently while keeping a bounded trajectory. Therefore, we propose a solution based on differential evolution (DE) algorithm mechanisms, including in its configuration self-adaptation of control parameters, population size reduction, ε-constraint handling with adjustment, and mutation based on elitistic best vector. Different aspects of this DE configuration are studied for the constrained UGPP challenge, on a prepared benchmark set comprised of 28 different specialized scenarios. The DE configurations were tested over a benchmark set over 51 independent runs for each DE configuration aspect. Comparison and suitability for the combination of these mechanisms is reported, through the per-scenario and aggregated statistical performance differences, including different constraint handling definition strategies, different DE mutation strategies' configurations, and population sizing parameterizations. Our proposed solution outranked all other compared algorithms, keeping a trajectory within the limits with 100% success rate in all physically feasible scenarios; on average, it improved the randomly initialized trajectories fitness by roughly 50%, even reaching perfect fitness (all-around, 360-degree eddy corridor sampling) in some scenarios.en_US
dc.languageengen_US
dc.relation.ispartofApplied Soft Computing Journalen_US
dc.sourceApplied Soft Computing Journal[ISSN 1568-4946],v. 42, p. 93-118en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherConstraint handlingen_US
dc.subject.otherDifferential evolutionen_US
dc.subject.otherSub-mesoscale ocean eddy samplingen_US
dc.subject.otherUnderwater glider path planningen_US
dc.subject.otherUnderwater roboticsen_US
dc.titleConstrained differential evolution optimization for underwater glider path planning in sub-mesoscale eddy samplingen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.asoc.2016.01.038
dc.identifier.scopus84957998544
dc.identifier.isi000371793400007
dc.contributor.authorscopusid23975217400
dc.contributor.authorscopusid50861566500
dc.contributor.authorscopusid56448110800
dc.description.lastpage118-
dc.description.firstpage93-
dc.relation.volume42-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid1202017
dc.contributor.daisngid8050203
dc.contributor.daisngid7837005
dc.contributor.wosstandardWOS:Zamuda, A
dc.contributor.wosstandardWOS:Sosa, JDH
dc.contributor.wosstandardWOS:Adler, L
dc.date.coverdateMayo 2016
dc.identifier.ulpgces
dc.description.sjr1,308
dc.description.jcr3,541
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-3022-7698-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameHernández Sosa, José Daniel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.