Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/52599
DC FieldValueLanguage
dc.contributor.authorZamuda, Alešen_US
dc.contributor.authorHernández Sosa, José Danielen_US
dc.contributor.authorAdler, Leonharden_US
dc.date.accessioned2018-12-04T15:51:55Z-
dc.date.available2018-12-04T15:51:55Z-
dc.date.issued2016en_US
dc.identifier.issn1568-4946en_US
dc.identifier.urihttp://hdl.handle.net/10553/52599-
dc.description.abstractThis paper presents an approach for tackling constrained underwater glider path planning (UGPP), where the feasible path area is defined as a corridor around the border of an ocean eddy. The objective of the glider here is to sample the oceanographic variables more efficiently while keeping a bounded trajectory. Therefore, we propose a solution based on differential evolution (DE) algorithm mechanisms, including in its configuration self-adaptation of control parameters, population size reduction, ε-constraint handling with adjustment, and mutation based on elitistic best vector. Different aspects of this DE configuration are studied for the constrained UGPP challenge, on a prepared benchmark set comprised of 28 different specialized scenarios. The DE configurations were tested over a benchmark set over 51 independent runs for each DE configuration aspect. Comparison and suitability for the combination of these mechanisms is reported, through the per-scenario and aggregated statistical performance differences, including different constraint handling definition strategies, different DE mutation strategies' configurations, and population sizing parameterizations. Our proposed solution outranked all other compared algorithms, keeping a trajectory within the limits with 100% success rate in all physically feasible scenarios; on average, it improved the randomly initialized trajectories fitness by roughly 50%, even reaching perfect fitness (all-around, 360-degree eddy corridor sampling) in some scenarios.en_US
dc.languageengen_US
dc.relation.ispartofApplied Soft Computing Journalen_US
dc.sourceApplied Soft Computing Journal[ISSN 1568-4946],v. 42, p. 93-118en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherConstraint handlingen_US
dc.subject.otherDifferential evolutionen_US
dc.subject.otherSub-mesoscale ocean eddy samplingen_US
dc.subject.otherUnderwater glider path planningen_US
dc.subject.otherUnderwater roboticsen_US
dc.titleConstrained differential evolution optimization for underwater glider path planning in sub-mesoscale eddy samplingen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.asoc.2016.01.038
dc.identifier.scopus84957998544
dc.identifier.isi000371793400007
dc.contributor.authorscopusid23975217400
dc.contributor.authorscopusid50861566500
dc.contributor.authorscopusid56448110800
dc.description.lastpage118-
dc.description.firstpage93-
dc.relation.volume42-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid1202017
dc.contributor.daisngid8050203
dc.contributor.daisngid7837005
dc.contributor.wosstandardWOS:Zamuda, A
dc.contributor.wosstandardWOS:Sosa, JDH
dc.contributor.wosstandardWOS:Adler, L
dc.date.coverdateMayo 2016
dc.identifier.ulpgces
dc.description.sjr1,308
dc.description.jcr3,541
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-3022-7698-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameHernández Sosa, José Daniel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

65
checked on Apr 21, 2024

WEB OF SCIENCETM
Citations

58
checked on Feb 25, 2024

Page view(s)

22
checked on Oct 29, 2022

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.