Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/52599
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zamuda, Aleš | en_US |
dc.contributor.author | Hernández Sosa, José Daniel | en_US |
dc.contributor.author | Adler, Leonhard | en_US |
dc.date.accessioned | 2018-12-04T15:51:55Z | - |
dc.date.available | 2018-12-04T15:51:55Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.issn | 1568-4946 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/52599 | - |
dc.description.abstract | This paper presents an approach for tackling constrained underwater glider path planning (UGPP), where the feasible path area is defined as a corridor around the border of an ocean eddy. The objective of the glider here is to sample the oceanographic variables more efficiently while keeping a bounded trajectory. Therefore, we propose a solution based on differential evolution (DE) algorithm mechanisms, including in its configuration self-adaptation of control parameters, population size reduction, ε-constraint handling with adjustment, and mutation based on elitistic best vector. Different aspects of this DE configuration are studied for the constrained UGPP challenge, on a prepared benchmark set comprised of 28 different specialized scenarios. The DE configurations were tested over a benchmark set over 51 independent runs for each DE configuration aspect. Comparison and suitability for the combination of these mechanisms is reported, through the per-scenario and aggregated statistical performance differences, including different constraint handling definition strategies, different DE mutation strategies' configurations, and population sizing parameterizations. Our proposed solution outranked all other compared algorithms, keeping a trajectory within the limits with 100% success rate in all physically feasible scenarios; on average, it improved the randomly initialized trajectories fitness by roughly 50%, even reaching perfect fitness (all-around, 360-degree eddy corridor sampling) in some scenarios. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Applied Soft Computing Journal | en_US |
dc.source | Applied Soft Computing Journal[ISSN 1568-4946],v. 42, p. 93-118 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Constraint handling | en_US |
dc.subject.other | Differential evolution | en_US |
dc.subject.other | Sub-mesoscale ocean eddy sampling | en_US |
dc.subject.other | Underwater glider path planning | en_US |
dc.subject.other | Underwater robotics | en_US |
dc.title | Constrained differential evolution optimization for underwater glider path planning in sub-mesoscale eddy sampling | en_US |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.1016/j.asoc.2016.01.038 | |
dc.identifier.scopus | 84957998544 | |
dc.identifier.isi | 000371793400007 | |
dc.contributor.authorscopusid | 23975217400 | |
dc.contributor.authorscopusid | 50861566500 | |
dc.contributor.authorscopusid | 56448110800 | |
dc.description.lastpage | 118 | - |
dc.description.firstpage | 93 | - |
dc.relation.volume | 42 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 1202017 | |
dc.contributor.daisngid | 8050203 | |
dc.contributor.daisngid | 7837005 | |
dc.contributor.wosstandard | WOS:Zamuda, A | |
dc.contributor.wosstandard | WOS:Sosa, JDH | |
dc.contributor.wosstandard | WOS:Adler, L | |
dc.date.coverdate | Mayo 2016 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 1,308 | |
dc.description.jcr | 3,541 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-3022-7698 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Hernández Sosa, José Daniel | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
68
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
62
checked on Nov 24, 2024
Page view(s)
79
checked on Oct 12, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.