Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52450
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Mostafa, Sheikh Shanawaz | en_US |
dc.contributor.author | Morgado-Dias, Fernando | en_US |
dc.contributor.author | Ravelo-García, Antonio G. | en_US |
dc.date.accessioned | 2018-11-25T20:26:46Z | - |
dc.date.available | 2018-11-25T20:26:46Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 0941-0643 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/52450 | - |
dc.description.abstract | Obstructive sleep apnea is a disorder characterized by pauses in respiration during sleep. Due to this disturbance in breathing, there is a decrease in the oxygen saturation (SpO2) level. Thus, SpO2 can be used as a source of information for the automatic detection of apnea. Several solutions exist in the literature where different features are used. To find a better discriminant capacity, a subset of few features that obtains higher accuracy with the proper classifier is needed. To face this challenge, this work compares two different feature selection methods. The first one is a filter method named minimum redundancy maximum relevance, and the other one is called sequential forward search. These methods are tested with different classifiers. Two public datasets with 8 and 25 subjects are used to test and compare the performances of the different feature selection methods. A set of features for each classifier is obtained, and the results are compared with the previous work. The results found in this work show a good performance with respect to the state of the art and present a good option for apnea screening with low resources. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Neural Computing and Applications | en_US |
dc.source | Neural Computing and Applications[ISSN 0941-0643], n. 32, p. 15711–15731 | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Classification | en_US |
dc.subject.other | Feature section | en_US |
dc.subject.other | mRMR | en_US |
dc.subject.other | SpO2 | en_US |
dc.subject.other | SFS | en_US |
dc.subject.other | Sleep apnea | en_US |
dc.title | Comparison of SFS and mRMR for oximetry feature selection in obstructive sleep apnea detection | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00521-018-3455-8 | en_US |
dc.identifier.scopus | 85044933820 | - |
dc.contributor.authorscopusid | 55489640900 | - |
dc.contributor.authorscopusid | 57200602527 | - |
dc.contributor.authorscopusid | 9634135600 | - |
dc.identifier.issue | 20 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,713 | |
dc.description.jcr | 5,606 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
Colección: | Artículos |
Citas SCOPUSTM
14
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
13
actualizado el 15-dic-2024
Visitas
148
actualizado el 30-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.