Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52450
Campo DC Valoridioma
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.date.accessioned2018-11-25T20:26:46Z-
dc.date.available2018-11-25T20:26:46Z-
dc.date.issued2020en_US
dc.identifier.issn0941-0643en_US
dc.identifier.urihttp://hdl.handle.net/10553/52450-
dc.description.abstractObstructive sleep apnea is a disorder characterized by pauses in respiration during sleep. Due to this disturbance in breathing, there is a decrease in the oxygen saturation (SpO2) level. Thus, SpO2 can be used as a source of information for the automatic detection of apnea. Several solutions exist in the literature where different features are used. To find a better discriminant capacity, a subset of few features that obtains higher accuracy with the proper classifier is needed. To face this challenge, this work compares two different feature selection methods. The first one is a filter method named minimum redundancy maximum relevance, and the other one is called sequential forward search. These methods are tested with different classifiers. Two public datasets with 8 and 25 subjects are used to test and compare the performances of the different feature selection methods. A set of features for each classifier is obtained, and the results are compared with the previous work. The results found in this work show a good performance with respect to the state of the art and present a good option for apnea screening with low resources.en_US
dc.languageengen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.sourceNeural Computing and Applications[ISSN 0941-0643], n. 32, p. 15711–15731en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherClassificationen_US
dc.subject.otherFeature sectionen_US
dc.subject.othermRMRen_US
dc.subject.otherSpO2en_US
dc.subject.otherSFSen_US
dc.subject.otherSleep apneaen_US
dc.titleComparison of SFS and mRMR for oximetry feature selection in obstructive sleep apnea detectionen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-018-3455-8en_US
dc.identifier.scopus85044933820-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid57200602527-
dc.contributor.authorscopusid9634135600-
dc.identifier.issue20-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,713
dc.description.jcr5,606
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

14
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

13
actualizado el 15-dic-2024

Visitas

148
actualizado el 30-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.