Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/52450
DC FieldValueLanguage
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.date.accessioned2018-11-25T20:26:46Z-
dc.date.available2018-11-25T20:26:46Z-
dc.date.issued2020en_US
dc.identifier.issn0941-0643en_US
dc.identifier.urihttp://hdl.handle.net/10553/52450-
dc.description.abstractObstructive sleep apnea is a disorder characterized by pauses in respiration during sleep. Due to this disturbance in breathing, there is a decrease in the oxygen saturation (SpO2) level. Thus, SpO2 can be used as a source of information for the automatic detection of apnea. Several solutions exist in the literature where different features are used. To find a better discriminant capacity, a subset of few features that obtains higher accuracy with the proper classifier is needed. To face this challenge, this work compares two different feature selection methods. The first one is a filter method named minimum redundancy maximum relevance, and the other one is called sequential forward search. These methods are tested with different classifiers. Two public datasets with 8 and 25 subjects are used to test and compare the performances of the different feature selection methods. A set of features for each classifier is obtained, and the results are compared with the previous work. The results found in this work show a good performance with respect to the state of the art and present a good option for apnea screening with low resources.en_US
dc.languageengen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.sourceNeural Computing and Applications[ISSN 0941-0643], n. 32, p. 15711–15731en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherClassificationen_US
dc.subject.otherFeature sectionen_US
dc.subject.othermRMRen_US
dc.subject.otherSpO2en_US
dc.subject.otherSFSen_US
dc.subject.otherSleep apneaen_US
dc.titleComparison of SFS and mRMR for oximetry feature selection in obstructive sleep apnea detectionen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00521-018-3455-8en_US
dc.identifier.scopus85044933820-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid57200602527-
dc.contributor.authorscopusid9634135600-
dc.identifier.issue20-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,713
dc.description.jcr5,606
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

14
checked on Dec 15, 2024

WEB OF SCIENCETM
Citations

13
checked on Dec 15, 2024

Page view(s)

148
checked on Nov 30, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.