Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52450
Título: Comparison of SFS and mRMR for oximetry feature selection in obstructive sleep apnea detection
Autores/as: Mostafa, Sheikh Shanawaz
Morgado-Dias, Fernando
Ravelo-García, Antonio G. 
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Classification
Feature section
mRMR
SpO2
SFS, et al.
Fecha de publicación: 2020
Publicación seriada: Neural Computing and Applications 
Resumen: Obstructive sleep apnea is a disorder characterized by pauses in respiration during sleep. Due to this disturbance in breathing, there is a decrease in the oxygen saturation (SpO2) level. Thus, SpO2 can be used as a source of information for the automatic detection of apnea. Several solutions exist in the literature where different features are used. To find a better discriminant capacity, a subset of few features that obtains higher accuracy with the proper classifier is needed. To face this challenge, this work compares two different feature selection methods. The first one is a filter method named minimum redundancy maximum relevance, and the other one is called sequential forward search. These methods are tested with different classifiers. Two public datasets with 8 and 25 subjects are used to test and compare the performances of the different feature selection methods. A set of features for each classifier is obtained, and the results are compared with the previous work. The results found in this work show a good performance with respect to the state of the art and present a good option for apnea screening with low resources.
URI: http://hdl.handle.net/10553/52450
ISSN: 0941-0643
DOI: 10.1007/s00521-018-3455-8
Fuente: Neural Computing and Applications[ISSN 0941-0643], n. 32, p. 15711–15731
Colección:Artículos
Vista completa

Citas SCOPUSTM   

14
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

13
actualizado el 15-dic-2024

Visitas

148
actualizado el 30-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.