Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52400
Título: | Study of dynamic factors in indoor positioning for harsh environments | Autores/as: | de Blasio, Gabriel Quesada-Arencibia, Alexis García, Carmelo R. Molina-Gil, Jezabel Miriam Caballero-Gil, Cándido |
Clasificación UNESCO: | 3327 Tecnología de los sistemas de transporte 120304 Inteligencia artificial |
Fecha de publicación: | 2017 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 11th International Conference on Ubiquitous Computing and Ambient Intelligence, (UCAmI 2017) | Resumen: | This paper presents a study of the impact of dynamic factors on indoor positioning. A positioning system is presented that provides advanced information services based on two subsystems: Wi-Fi and Bluetooth Low Energy (BLE). The first subsystem was intended to position users with not very high levels of accuracy and precision, but not too far from reality, and the second one was intended to position users with greater precision. It is designed for use in stations and terminals of public transportation systems in which the conditions are “hostile” or unfavourable. Experimental results demonstrate that, using different devices for both offline and online phase, RSS differences, Euclidean distance and comparing fingerprints with Weighted k-Nearest Neighbours (WKNN) algorithm, the system is able to position users with reasonable values of accuracy and precision: for Wi-Fi, with only 3 samples, depending on the orientation and compared with 3 neighbours, an average accuracy between 4.15 and 4.58 m and a precision in the range 4–7 m or less 90% of the time were obtained; for BLE, best accuracy results were obtained by comparison with 2 neighbours, giving a position error of 1.59 m and a CDF value of 2.83 m or less 90% of the time. | URI: | http://hdl.handle.net/10553/52400 | ISBN: | 978-3-319-67584-8 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-67585-5_8 | Fuente: | Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science, v. 10586 LNCS, p. 67-78 |
Colección: | Capítulo de libro |
Citas SCOPUSTM
1
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 15-dic-2024
Visitas
123
actualizado el 30-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.