Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52400
Título: Study of dynamic factors in indoor positioning for harsh environments
Autores/as: de Blasio, Gabriel 
Quesada-Arencibia, Alexis 
García, Carmelo R. 
Molina-Gil, Jezabel Miriam
Caballero-Gil, Cándido
Clasificación UNESCO: 3327 Tecnología de los sistemas de transporte
120304 Inteligencia artificial
Fecha de publicación: 2017
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 11th International Conference on Ubiquitous Computing and Ambient Intelligence, (UCAmI 2017) 
Resumen: This paper presents a study of the impact of dynamic factors on indoor positioning. A positioning system is presented that provides advanced information services based on two subsystems: Wi-Fi and Bluetooth Low Energy (BLE). The first subsystem was intended to position users with not very high levels of accuracy and precision, but not too far from reality, and the second one was intended to position users with greater precision. It is designed for use in stations and terminals of public transportation systems in which the conditions are “hostile” or unfavourable. Experimental results demonstrate that, using different devices for both offline and online phase, RSS differences, Euclidean distance and comparing fingerprints with Weighted k-Nearest Neighbours (WKNN) algorithm, the system is able to position users with reasonable values of accuracy and precision: for Wi-Fi, with only 3 samples, depending on the orientation and compared with 3 neighbours, an average accuracy between 4.15 and 4.58 m and a precision in the range 4–7 m or less 90% of the time were obtained; for BLE, best accuracy results were obtained by comparison with 2 neighbours, giving a position error of 1.59 m and a CDF value of 2.83 m or less 90% of the time.
URI: http://hdl.handle.net/10553/52400
ISBN: 978-3-319-67584-8
ISSN: 0302-9743
DOI: 10.1007/978-3-319-67585-5_8
Fuente: Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science, v. 10586 LNCS, p. 67-78
Colección:Capítulo de libro
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.